Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-5pp.581-586

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
A.R. Valeev, A.N. Zotov, O.E. Zubkova, R.G. Rizvanov, and M.V. Sviridov, "Systems with Discontinuous Quasi-Zero Reconstructing Force," Mech. Solids. 52 (5), 581-586 (2017)
Year 2017 Volume 52 Number 5 Pages 581-586
DOI 10.3103/S0025654417050132
Title Systems with Discontinuous Quasi-Zero Reconstructing Force
Author(s) A.R. Valeev (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia)
A.N. Zotov (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia, a-zot2@yandex.ru)
O.E. Zubkova (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia)
R.G. Rizvanov (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia)
M.V. Sviridov (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia)
Abstract The paper deals with the problem of constructing systems with discontinuous quasi-zero reconstructing force on the basis of structures where an elastic element moves between two directrices of prescribed design shape perpendicularly to their axis of symmetry. A spring is considered as an elastic element. The cases where the elastic element works only in compression or only in tension are considered.
Keywords discontinuous quasi-zero reconstructing force, vibration, nonlinear vibration, system with quasi-zero stiffness
References
1.  K. Magnus, Vibrations. Introduction to Studies of Vibratory Systems (Teubner, Stuttgart, 1976; Mir, Moscow, 1982).
2.  P. M. Alabuzhev and A. A. Gritchin, Vibration Isolation Systems with Quasi-Zero Stiffness, Ed. by K. M. Ragulskis (Mashinostroenie, Leningrad, 1986) [in Russian].
3.  A. Carrella, M. Brennan, and T. Waters, "Static Analysis of a Passive Vibration Isolator with Quasi-Zero Stiffness Characteristic," J. Sound Vibr. 301 (3-5), 678-689 (2007).
4.  X. Liu, X. Huang, and H. Hua, "On the Characteristics of a Quasi-Zero Stiffness Isolator Using Euler Buckled Beam as Negative Stiffness Corrector," J. Sound Vibr. 332, 3359-3376 (2013)
5.  W. Robertson, B. Cazzolato, and A. Zander, "Horizontal Stability of a Quasi-Zero Stiffness Mechanism Using Inclined Linear Springs," Acoust. Austral. 42 (1), 8-13 (2014).
6.  I. Kovacic, M. J. Brennan, and T. Waters, "Study of a Nonlinear Vibration Isolator with a Quasi-Zero Stiffness Characteristic," J. Sound Vibr. 315, 700-711 (2008).
7.  W. Robertson, B. Cazzolato, and A. Zander, "Experimental Results of a 1D Passive Magnetic Spring Approaching Quasi-Zero-Stiffness and Using Active Skyhook Damping," in Proc. Conf. The Australian Acoustical Society 2013, Australia (Victor Harbor, 2013).
8.  A. N. Zotov, "Vibration Isolators with Quasi-Zero Stiffness," Izv. Vyssh. Uchebn. Zaved. "Gornyi Zhurnal", No. 2, 147-151 (2007).
Received 01 April 2015
Link to Fulltext
<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100