Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-5pp.575-580

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
R.A. Kayumov, "Postbuckling Behavior of Compressed Rods in an Elastic Medium," Mech. Solids. 52 (5), 575-580 (2017)
Year 2017 Volume 52 Number 5 Pages 575-580
DOI 10.3103/S0025654417050120
Title Postbuckling Behavior of Compressed Rods in an Elastic Medium
Author(s) R.A. Kayumov (Kazan State University of Architecture and Civil Engineering, ul. Zelenaya 1, Kazan, 420043 Russia, kayumov@rambler.ru)
Abstract The postbuckling of rods loaded by a compressive force P in an elastic medium is considered. The resolving nonlinear equation is obtained, and a method for solving this equation is given. It is shown that, for large lengths, in contrast to the case without elastic medium, the deflection increases as the force P decreases after the loss of stability. Several simple finite-element models, namely, the problems of compression of multilink rods with links connected by springs, are considered to confirm this effect.
Keywords loss of stability, rod, elastic medium, postbuckling bending, nonlinear equation
References
1.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1988) [in Russian].
2.  A. S. Volmir, Stability of Elastic Systems (Fizmatgiz, Moscow, 1963) [in Russian].
3.  N. A. Alfutov, Calculations of Stability of Elastic Systems (Mashinostroenie, Moscow, 1960) [in Russian].
4.  V. Z. Vlasov and N. N. Leontiev, Beams, Plate, and Shells on an Elastic Foundation (Fizmatgiz, Moscow, 1960) [in Russian].
5.  A. N. Guz' and I. Yu. Babuch, Three-Dimensional Stability Theory of Rods, Plates, and Shells, (Vishcha Shkola, Kiev, 1980) [in Russian].
6.  A. N. Guz', Stability of Elastic Bodies in Finite Deformations (Naukova Dumka, Kiev, 1973) [in Russian].
7.  N. S. Astapov and V. M. Kornev, "Postbuckling Behavior of an Ideal Bar on an Elastic Foundation," Zh. Prikl. Mekh. Tekhn. Fiz. 35 (2), 130-142 (1994) [J. Appl. Mech. Phys. (Engl. Transl.) 35 (2), 286-296 (1994)].
8.  N. S. Astapov, "Models for the Buckling of Bars on an Elastic Base," Zh. Prikl. Mekh. Tekhn. Fiz. 37 (3), 174-177 (1996) [J. Appl. Mech. Phys. (Engl. Transl.) 37 (3), 444-446 (1996)].
9.  V. N. Paimushin, "Problems of Geometric Non-Linearity and Stability in the Mechanics of Thin Shells and Rectilinear Columns," Prikl. Mat. Mekh. 71 (5), 855-893 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (5), 772-805 (2007)].
10.  V. N. Paimushin, "Theory of Stability for Three-Layer Plates and Shells: Stages of Development, State-of-the-Art, and Prospects," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 148-162 (2001) [Mech. Solids (Engl. Transl.) 36 (2), 127-137 (2001)].
11.  R. A. Kayumov and B. F. Tazyukov, "Stability of Bent Thin Elastic Plate Loaded by Transverse Force," Izv. Vyssh. Uchebn. Zaved. Aviats. Tekhnika, No. 4, 12-15 (2001).
12.  S. P. Ivanov and O. G. Ivanov, Laminate Systems in Contact with Elastic Meidum (MarGTU, Ioshkar-Ola, 2008) [in Russian].
13.  V. D. Kurguzov, "Modeling of Thin Film Separation in Compression," Vychisl. Mekh. Sploshnykh Sred 7 (1), 91-99 (2014).
14.  A. R. Shugurov and A. V. Panin, "Mechanisms of Periodic Deformation of the "Film-Substrate" System under the Action of Compressing Stresses," Fizich. Mezomekh. 12 (3), 23-32 (2009).
Received 21 April 2015
Link to Fulltext
<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100