Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2004-5pp.11-16

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
I. G. Boruk, L. G. Lobas, and L. D. Patricio, "Equilibrium states of an inverted pendulum acted upon by a follower force on the elastically restrained upper end," Mech. Solids. 39 (5), 11-16 (2004)
Year 2004 Volume 39 Number 5 Pages 11-16
Title Equilibrium states of an inverted pendulum acted upon by a follower force on the elastically restrained upper end
Author(s) I. G. Boruk (Kiev, Covilia (Portugal))
L. G. Lobas (Kiev, Covilia (Portugal))
L. D. Patricio (Kiev, Covilia (Portugal))
Abstract A model of an elastic beam subjected to a follower force represented by an inverted two-link pendulum with elastoviscous joints is studied. It is shown that a divergent bifurcation can occur at certain values of the magnitude of the follower force and stiffness of the elastic restraint. As a result of this bifurcation, the vertical equilibrium becomes unstable and two new non-vertical equilibrium states appear. This bifurcation is referred to as the fork bifurcation or triple equilibrium bifurcation.
References
1.  H. Ziegler, "Die Srabilitäskriterien der Elastomechanik," Ing.-Arch, Bd. 20, H. 1, S. 49-56, 1952.
2.  P. Hagedorn, "On the destabilizing effect of the nonlinear damping in non-conservative systems with follower forces," Int. J. Non-linear Mech., Vol. 5, No. 2, pp. 341-358, 1970.
3.  Ya. G. Panovko and S. V. Sorokin, Quasi-stability of elastoviscous systems with follower forces," Izv. AN SSSR. MTT [Mechanics of Solids], No. 5, pp. 135-139, 1970.
4.  H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer, Wien, New York, 1991.
5.  S. A. Agafonov, "Stability and self-sustained vibrations of a double pendulum with elastic members under the action of a follower force," Izv. AN. MTT [Mechanics of Solids], No. 5, pp. 185-190, 1992.
6.  S. A. Agafonov, "Stabilization of the equilibrium of Ziegler's pendulum by means of parametric excitation," Izv. AN. MTT [Mechanics of Solids], No. 6, pp. 36-40, 1997.
7.  N. I. Zhinzher, "The influence of partial dissipation forces on the stability of elastic systems," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 149-155, 1994.
8.  A. P. Seiranyan, "Stabilization of non-conservative systems by dissipative forces and indeterminacy of the critical load," Doklady RAN, Vol. 348, No. 3, pp. 323-326, 1996.
9.  N. N. Bautin, Behavior of Dynamical Systems Near Stability Region Boundaries [in Russian], Nauka, Moscow, 1984.
10.  L. G. Lobas, "Nonlinear stability and fork-type bifurcations in dynamical systems with the simplest symmetry," PMM [Applied Mathematics and Mechanics], Vol. 60, No. 2, pp. 327-332, 1996.
11.  A. M. Lyapunov, Collected Works. Volume 2 [in Russian], Izd-vo AN SSSR, Moscow, Leningrad, 1956.
12.  V. G. Verbitskii and L. G. Lobas, "Real bifurcations in two-link systems with rolling," PMM [Applied Mathematics and Mechanics], Vol. 60, No. 3, pp. 418-425, 1996.
Received 21 January 2002
<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100