Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-3pp.345-352

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 3 / 2015 | Next article >>
I.M. Peshkhoev and B.V. Sobol, "Spatial Problem of Crack Theory for a Prestressed Incompressible Elastic Layer," Mech. Solids. 50 (3), 345-352 (2015)
Year 2015 Volume 50 Number 3 Pages 345-352
DOI 10.3103/S0025654415030103
Title Spatial Problem of Crack Theory for a Prestressed Incompressible Elastic Layer
Author(s) I.M. Peshkhoev (Don State Technical University, pl. Gagarina 1, Rostov-on-Don, 344000 Russia, peshkhoev@rambler.ru)
B.V. Sobol (Don State Technical University, pl. Gagarina 1, Rostov-on-Don, 344000 Russia, b.sobol@mail.ru)
Abstract The three-dimensional elasticity problem of loading the shores of an elliptic crack by normal pressure keeping the crack in the open state is considered. The crack is located in the midplane of a layer under the action of a preliminary finite deformation in the direction of the crack symmetry axes. The model of incompressible neo-Hookean material is considered. The two-dimensional integral Fourier transform is used to reduce the problem to a singular integro-differential equation of the first kind for the crack opening function. An asymptotic solution of the problem is constructed in the form of an expansion in two parameters characterizing the relative thickness of the layer and the difference between the coefficients of the preliminary finite deformation. It is shown that the initial stress does not change the order of the stress field singularity near the crack edge and influences only the normal stress intensity factor. The influence of the layer thickness and the preliminary stress parameters on the intensity of normal stresses in the crack plane is investigated.
Keywords flat elliptic crack, prestressed elastic layer, asymptotic solution, stress intensity
References
1.  A. I. Lurie, Nonlinear Theory of Elasticity. (Nauka, Moscow, 1980) [in Russian].
2.  I. I. Vorovich, V. M. Alexandrov, and V. A. Babeshko, Nonclassical Mixed Problems of Elasticity. (Nauka, Moscow, 1974) [in Russian].
3.  A. N. Guz', "Theory of Cracks in Elastic Bodies with Initial Stresses (Spatial Static Problems)," Prikl. Mekh. 17 (6), 3-20 (1981).
4.  R. S,. Dhalival, B. M. Singh, and J. G. Rokne, "Axisymmetric Contact and Crack Problems for an Initially Stressed Neo-Hookean Elastic Layer," Int. J. Engng Sci. 18 (1), 169-179 (1980).
5.  D. M. Haughton, "Penny-Shaped Cracks in a Finitely Deformed Elastic Solid," Int. J. Solid Struct. 18 (8), 699-704 (1982).
6.  A. R. S. Selvadurai, "The Penny-Shaped Crack Problem in a Finitely Deformed Incompressible Elastic Solid," Int. J. Fract. 16 (4), 327-333 (1980).
7.  K. M. Filippova, "On the Effect of Initial Stresses on the Opening of a Circular Crack," Prikl. Mat. Mekh. 47 (2), 286-290 (1983) [J. Appl. Math. Mech. (Engl. Transl.) 47 (2), 240-243 (1983)].
8.  K. M. Filippova, "Stability of a Compressed Elastic Layer Weakened by a Circular Crack," Prikl. Mat. Mekh. 52 (2), 327-330 (1988) [J. Appl. Math. Mech. (Engl. Transl.) 52 (2), 257-260 (1988)].
9.  V. M. Alexandrov and B. V. Sobol', "Equilibrium of a Prestressed Elastic Body Weakened by a Plane Elliptical Crack," Prikl. Mat. Mekh. 49 (2), 348-352 (1985) [J. Appl. Math. Mech. (Engl. Transl.) 49 (2), 268-272 (1985)].
10.  B. I. Smetanin and B. V. Sobol', "Equilibrium of an Elastic Layer Weakened by Plane Cracks," Prikl. Mat. Mekh. 48 (6), 1030-1038 (1984) [J. Appl. Math. Mech. (Engl. Transl.) 48 (6), 757-764 (1984)].
11.  V. M. Alexandrov, B. I. Smetanin, and B. V. Sobol' Thin Stress Concentrators in Elastic Bodies. (Nauka, Moscow, 1993) [in Russian].
12.  B. V. Sobol', "On Asymptotic Solutions of Three-Dimensional Static Problems of Elasticity with Mixed Boundary Conditions," Vestnik Nizhegorod. Univ., No. 4, 1778-1789 (2011).
13.  K. M. Filippova, "Three-Dimensional Contact Problem for a Prestressed Elastic Body," Prikl. Mat. Mekh. 42 (6), 1080-1084 (1978) [J. Appl. Math. Mech. (Engl. Transl.) 42 (6), 1183-1188 (1978)].
14.  V. M. Alexandrov, "Spatial Contact Problems for a Prestressed Incompressible Elastic Layer," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 141-146 (2011) [Mech. Solids (Engl. Transl.) 46 (2), 275-279 (2011)].
15.  V. M. Alexandrov and V. S. Poroshin, "Contact Problem for Prestressed Physically Nonlinear Elastic Layer," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 79-85 (1984) [Mech. Solids (Engl. Transl.)].
16.  Yu. A. Brychkov and A. P. Prudnikov, Integral Transformations of Generalized Functions. (Nauka, Moscow, 1977) [in Russian].
Received 11 February 2013
Link to Fulltext
<< Previous article | Volume 50, Issue 3 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100