Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-3pp.337-344

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 3 / 2015 | Next article >>
B.A. Zhukov, "Nonlinear Interaction of Finite Longitudinal Shear with Finite Torsion of a Rubber-Like Bushing," Mech. Solids. 50 (3), 337-344 (2015)
Year 2015 Volume 50 Number 3 Pages 337-344
DOI 10.3103/S0025654415030097
Title Nonlinear Interaction of Finite Longitudinal Shear with Finite Torsion of a Rubber-Like Bushing
Author(s) B.A. Zhukov (Volgograd State Technical University, pr. Lenina 28, Volgograd, 400131 Russia, zhukov.b.a@gmail.com)
Abstract In the framework of nonlinear elasticity, an example of longitudinal shear and torsion of a cylindrical elastomer bushing pressed between two rigid holders is used to study the dependence of torsional rigidity on the longitudinal shear and the dependence of the longitudinal shear rigidity on the angle of torsion for two potentials of the strain energy. An analytic model of interaction between the longitudinal shear and the transverse torsion is proposed in the asymptotic approximation.
Keywords finite strain, hyperelasticity, incompressibility, finite longitudinal shear, finite torsion, asymptotic approximation
References
1.  R. L. Fosdick and B. G. Kao, "Transverse Deformations Associated with Rectilinear Shear in Elastic Solids," J. Elasticity 8 (2), 117-142 (1978).
2.  F. Mollica and K. R. Rajagopal, "Secondary Deformation due to Axial Shear of the Annular Region between Two Eccentrically Placed Cylinders," J. Elasticity 48 (2), 103-123 (1997).
3.  A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics. (Oxford Univ. Press, Oxford, 1960; Mir, Moscow, 1965).
4.  J. K. Knowles, "On Finite Anti-Plane Chare for Incompressible Elastic Materials," J. Austral. Math. B19 (4), 400-415 (1976).
5.  L. M. Zubov, "On Reduction of Several Spatial Problems of Nonlinear Elasticity to Two-Dimensional Boundary-Value Problems," in Contemporary Problems of Continuum Mechanics. Proc. 5th Intern. Conf., Rostov-on-Don, 1999, Vol. 1 (Rostov Gos. Univ., NII Mekh. Prikl. Mat., Rostov-on-Don, 2000), pp. 83-87 [in Russian].
6.  A. I. Lurie, Nonlinear Theory of Elasticity. (Nauka, Moscow, 1980) [in Russian].
7.  M. Mooney, "A Theory of large Elastic Deformation," J. Appl. Phys. 11, 582-592 (1940).
8.  A. Ishibara, N. Hashitsume, and M. Tatibana, "Statistical Theory of Rubber-Like Elasticity," J. Chem. Phys. 19, 1508-1512 (1951).
9.  K. F. Chernykh and I. M. Shubina, "Elasticity Laws for Isotropic Incompressible Materials. A Phenomenological Approach," Mekh. Elastomerov (Krasnodar) 1 (242), 54-64 (1977).
Received 06 February 2013
Link to Fulltext
<< Previous article | Volume 50, Issue 3 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100