| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12854 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4810 |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
G.V. Garkushin, S.V. Razorenov, V.I. Rumyantsev, and A.S. Savinykh, "Dynamic Strength of Reaction-Sintered Silicon Carbide Ceramics," Mech. Solids. 49 (6), 616-622 (2014) |
Year |
2014 |
Volume |
49 |
Number |
6 |
Pages |
616-622 |
DOI |
10.3103/S0025654414060028 |
Title |
Dynamic Strength of Reaction-Sintered Silicon Carbide Ceramics |
Author(s) |
G.V. Garkushin (Institute for Problems of Chemical Physics, Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia, garkushin@ficp.ac.ru)
S.V. Razorenov (Institute for Problems of Chemical Physics, Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia, razsv@ficp.ac.ru)
V.I. Rumyantsev (Virial Ltd., ul. Engelsa 27 str. 143A, Saint-Petersburg 194156 Russia, info@virial.ru)
A.S. Savinykh (Institute for Problems of Chemical Physics, Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia, savas@ficp.ac.ru) |
Abstract |
The results of measurements of shock compression wave profiles for three modifications of carbide ceramics in the stress range 3−19 GPa are presented. The dynamic elasticity and spall strength limits of the materials are determined. It is shown that these characteristics are sensitive to specific characteristics of reaction-sintered ceramics related to technological parameters of the process of their manufacturing. It is confirmed that the spall strength of highly rigid ceramics varies nonmonotonically with increasing compression stress in the shock wave. |
Keywords |
silicon carbide, shock wave, spall strength, fracture, dynamic elasticity limit |
References |
1. | G. I. Kanel, S. V. Razorenov, and V. E. Fortov,
Shock-Wave Phenomena and the Properties of Condensed Matter
(Springer, New York, 2004). |
2. | G. G. Gnesin,
Silicon Carbide Materials
(Metallurgiya, Moscow, 1977)
[in Russian]. |
3. | G. G. Gnesin, V. V. Karlin, G. S. Oleinik, and V. I. Ostroverkhov,
Structure Silicon Carbide Materials
(Mashinostroenie, Moscow, 1975)
[in Russian]. |
4. | V. I. Rumyantsev, S. Yu. Boikov, A. S. Osmanov, and V. I. Fishchev,
"Quality Metering of Microstructure of Reaction-Sintered Silicon Carbide,"
Ogneupory Tekhnich. Keram.,
No. 12, 29-34 (2007). |
5. | A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and V. I. Rumyantsev,
"Evolution of Shock Waves in SiC ceramic,"
Zh. Tekhn. Fiz.
83 (7), 43-47 (2013)
[Tech. Fiz. (Engl. Transl.)
58 (7), 973-977 (2013)]. |
6. | N. K. Bourne, J. C. F. Millett, and I. Pickup,
"Delayed Failure in Shocked Silicon Carbide,"
J. Appl. Phys.
81 (9), 6019-6023 (1997). |
7. | R. Feng, Y. M. Gupta, and G. Yuan,
"Dynamic Strength and Inelastic Deformation of Ceramic under Shock Wave Loading,"
in Shock Compression of Condensed Matter. 1997. AIP Conference Proceedings,
Ed. by S. C. Schmidt et al., Vol. 429
(North-Holland, Amsterdam, 1998),
pp. 483-488. |
8. | M. E. Kipp and D. E. Grady,
"Shock Compression and Release in High-Strength Ceramics,"
in Shock Compression of Condensed Matter. 1989,
Ed. by S. C. Schmidt et al.
(North-Holland, Amsterdam, 1990),
pp. 377-380. |
9. | W. H. Gust, A. C. Holt, and E. B. Royce,
"Dynamic Yield, Compressional, and Elastic Parameters
for Several Lightweight Intermetallic Compounds,"
J. Appl. Phys.
44 (2), 550-560 (1973). |
10. | T. J. Vogler, W. D. Reinhart, L. C. Chhabildas, and D. P. Dandekar,
"Hugoniot and Strength Behavior of Silicon Carbide,"
J. Appl. Phys.
99 (2), 023512 (2006). |
11. | W. D. Winkler and A. J. Stilp,
"Spallation Behavior of TiB2, SiC, and B4C under Planar Impact Tensile Stresses,"
in Shock Compression of Condensed Matter. 1991,
Ed. by S. C. Schmidt et al.
(North-Holland, Amsterdam, 1992),
pp. 475-478. |
12. | M. E. Kipp and D. E. Grady,
"Shock Compression and Release in High-Strength Ceramics,"
in Shock Compression of Condensed Matter. 1989,
Ed. by S. C. Schmidt et al.
(North-Holland, Amsterdam, 1990),
pp. 377-380. |
13. | P. Bartkowski and D. P. Dandekar,
"Spall Strength of Sintered and Hot Pressed Silicon Carbide,"
in Shock Compression of Condensed Matter. 1995. AIP Conference Proceedings,
Ed. by S. C. Schmidt and W. C. Tao, Vol. 370
(Elsevier, 1996),
pp. 535-538. |
14. | A. M. Rajendran and D. J. Grove,
"Modeling the Shock Response of Silicon Carbide, Boron Carbide, and Titanium Diboride,
Int. J. Impact Engng
18 (6), 611-631 (1996). |
15. | R. Feng, G. F. Raiser, and Y. M. Gupta,
"Shock Response of Polycrystalline Silicone Carbide Undergoing Inelastic Deformation,"
J. Appl. Phys.
79 (3), 1378-1387 (1996). |
16. | T. J. Holmquist and G. R. Johnson,
"Characterization and Evaluation of Silicon Carbide for High-Velocity Impact,"
J. Appl. Phys.
97 (9), 093502 (2005). |
17. | G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov,
Shock-Wave Phenomena in Condensed Media,
(Yanus-K, Moscow, 1996)
[in Russian]. |
18. | L. M. Barker and R. E. Hollenbach,
"Laser Interferometer for Measuring High Velocities of Any Reflecting Surface,"
J. Appl. Phys.
43 (11), 4669-4675 (1972). |
19. | R. V. Goldstein,
"Fracture in Compression,"
Uspekhi Mekh.
2 (2), 3-20 (2003). |
|
Received |
20 June 2014 |
Link to Fulltext |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|