Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2014-6pp.605-615

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
G.I. Kanel, "Influence of Relaxation Processes on the Wave Dynamics of Shock Compression of Solids," Mech. Solids. 49 (6), 605-615 (2014)
Year 2014 Volume 49 Number 6 Pages 605-615
DOI 10.3103/S0025654414060016
Title Influence of Relaxation Processes on the Wave Dynamics of Shock Compression of Solids
Author(s) G.I. Kanel (Joint Institute for High Temperatures, Russian Academy of Sciences, ul.Izhorskaya 13-2, Moscow, 125412 Russia, kanel@ficp.ac.ru)
Abstract Nowadays, one obtains information about deformation and fracture strength at strain rates greater than 104 s−1 by analyzing the evolution of plane shock waves in the materials under study. This paper presents a short survey of methods for analyzing shock wave phenomena in relaxing media and recent observations of the evolution of elastoplastic shock compression waves in metals, some of which turned out to be unexpected.
Keywords high-rate strain, stress relaxation, shock wave, metal, ideal strength
References
1.  G. E. Duvall, "Propagation of Shock Waves in a Stress-Relaxing Medium," in Stress Waves in Anelastic Solids, Ed. by H. Kolsky and W. Prager (Springer, Berlin, 1964).
2.  T. J. Ahrens and G. E. Duvall, "Stress Relaxation behind Elastic Shock Waves in Rocks," J. Geophys. Res. 71 (18), 4349-4360 (1966).
3.  J. W. Taylor, "Dislocation Dynamics and Dynamic Yielding," J. Appl. Phys. 36 (10), 3146-3150 (1965).
4.  J. R. Asay, G. R. Fowles, and Y. Gupta, "Determination of Material Relaxation Properties from Measurements on Decaying Elastic Shock Fronts," J. Appl. Phys. 43 (2), 744-746 (1972).
5.  J. N. Johnson and L. M. Barker, "Dislocation Dynamics and Steady Plastic Wave Profiles in 6061T6 Aluminum," J. Appl. Phys. 40 (11), 4321-4334 (1969).
6.  L. C. Chhabildas and J. R. Asay, "Rise-Time Measurements of Shock Transitions in Aluminum, Copper, and Steel," J. Appl. Phys. 50 (4), 2749-2756 (1979).
7.  A. N. Dremin, S. A. Koldunov, and K. K. Shvedkov, "Shock-Initiated Detonation of Bulk-Density Charges," Fiz. Goreniya Vzryva, No. 1, 103-111 (1971) [Comb. Expl. Shock Waves (Engl. Transl.) 7 (1), 87-92 (1971)].
8.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].
9.  L. M. Barker and R. E. Hollenbach, "Shock Wave Study of the α-ε Phase Transition in Iron," J. Appl. Phys. 45 (11), 4872-4887 (1974).
10.  G. I. Kanel, "Experimental Determination of the Kinetics of Relaxation Processes during the Shock Compression of Condensing Media," Zh. Prikl. Mekh. Tekhn. Fiz. 18 (5), 117-122 (1977) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 18 (5), 685-689 (1977)].
11.  Y. Gupta, G. E. Duvall, and G. R. Eowles, "Dislocation Mechanisms for Stress Relaxation in Shocked LiF," J. Appl. Phys. 46 (2), 532-546 (1975).
12.  J. W. Swegle and D. E. Grady, "Shock Viscosity and the Prediction of Shock Wave Rise Times," J. Appl. Phys. 58 (2), 692-701 (1985).
13.  G. R. Cowan, "Shock Deformation and the Limiting Shear Strength of Metals," Trans. Metal. Soc. AIME 233 (6), 1120-1130 (1965).
14.  G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, "Submicrosecond Strength of the D16T Aluminum Alloy at Room and Elevated Temperatures," Fiz. Tverd. Tela 50 (5), 805-811 (2008) [Phys. Solid State (Engl. Transl.) 50 (5), 839-843 (2008)].
15.  E. B. Zaretsky and G. I. Kanel, "Tantalum and Vanadium Response to Shock-Wave Loading at Normal and Elevated Temperatures. Non-Monotonous Decay of the Elastic Wave in Vanadium," J. Appl. Phys. 115 (24), 243502 (2014).
16.  G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).
17.  E. V. Zaretsky and G. I. Kanel, "Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point," J. Appl. Phys. 114 (8), 083511 (2013).
18.  G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, "High Strain Rate Deformation and Fracture of the Magnesium Alloy Ma2-1 under Shock Wave Loading," Fiz. Tverd. Tela 54 (5), 1012-1018 (2012) [Phys. Solid State (Engl. Transl.) 54 (5), 1079-1085 (2012)].
19.  S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., "Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses," Pis'ma Zh. Eksp. Teor. Fiz. 92 (8), 568-573 (2010) [JETP Lett. (Engl. Transl.) 92 (8), 516-520 (2010)].
20.  V. H. Whitley, S. D. McGrane, D. E. Eakins, et al., "The Elastic-Plastic Response of Aluminum Films to Ultrafast Laser-Generated Shocks," J. Appl. Phys. 109, 013505 (2011).
21.  S. I. Ashitkov, M. B. Agranat, G. I. Kanel, and V. E. Fortov, "Approaching the Ultimate Shear and Tensile Strength of Aluminum in Experiments with Femtosecond Pulse Laser," in Shock Compression of Condensed Media 2011. AIP Conf Proc., Ed. by M. L. Elert, et al. (2012), pp. 1081-1084.
22.  Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al., "Large Elastic Wave Amplitude and Attenuation in Shocked Pure Aluminum," J. Appl. Phys. 105 (3), 036107 (2009).
23.  J. M. Winey, B. M. LaLone, P. B. Trivedi, and Y. M. Gupta, "Elastic Wave Amplitudes in Shock-Compressed Thin Polycrystalline Aluminum Samples," J. Appl. Phys. 106 (7), 073508 (2009).
24.  G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, "Resistance to Deformation and Fracture of Aluminum AD1 under Shock-Wave Loading at Temperatures of 20 and 600°C," Fiz. Tverd. Tela 52 (11), 2216-2222 (2010) [Phys. Solid State (Engl. Transl.) 52 (11), 2369-2375 (2010)].
25.  T. E. Arvidsson, Y. M. Gupta, and G. E. Duvall, "Precursor Delay in 1060 Aluminum," J. Appl. Phys. 46 (10), 4478 (1975).
26.  D. M. Clattenbuck, C. R. Krenn, M. L. Cohen, and J. W. Morris, "Phonon Instabilities and the Ideal Strength of Aluminum," Phys. Rev. Lett. 91 (13), 135501 (2003).
27.  K. Sakino, "Transition in the Rate Controlling Mechanism of FCC Metals at Very High Strain Rates and High Temperatures," J. Phys. IV France 10, Pr9-57-62 (2000).
28.  E. V. Zaretsky and G. I. Kanel, "Plastic Flow in Shock-Loaded Silver at Strain Rates from 104 s−1 to 107 s−1 and temperatures from 296 K to 1233 K," J. Appl. Phys. 110 (7), 073502 (2011).
29.  S. I. Ashitkov, P. S. Komarov, M. B. Agranat, et al., "Achievement of Ultimate Values of the Bulk and Shear Strengths of Iron Irradiated by Femtosecond Laser Pulses," Pis'ma Zh. Eksp. Teor. Fiz. 98 (7), 439-444 (2013) [JETP Lett. (Engl. Transl.) 98 (7), 384-388 (2013)].
30.  G. I. Kanel, S. V. Razorenov, G. V. Garkushin, et al., "Deformation Resistance and Fracture of Iron over a Wide Strain Rate Range," Fiz. Tverd. Tela 56 (8), 1518-1522 (2014) [Phys. Solid State (Engl. Transl.) 56 (8), 1569-1573 (2014)].
31.  R. F. Smith, J. H. Eggert, R. E. Rudd, et al., "High Strain-Rate Plastic Flow in Al and Fe," J. Appl. Phys. 110 (12), 123515 (2011).
32.  E. V. Zaretsky and G. I. Kanel, "Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression," J. Appl. Phys. 112 (7), 073504 (2012).
Received 15 June 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100