| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12854 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4810 |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
G.I. Kanel, "Influence of Relaxation Processes on the Wave Dynamics of Shock Compression of Solids," Mech. Solids. 49 (6), 605-615 (2014) |
Year |
2014 |
Volume |
49 |
Number |
6 |
Pages |
605-615 |
DOI |
10.3103/S0025654414060016 |
Title |
Influence of Relaxation Processes on the Wave Dynamics of Shock Compression of Solids |
Author(s) |
G.I. Kanel (Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13-2, Moscow, 125412 Russia, kanel@ficp.ac.ru) |
Abstract |
Nowadays, one obtains information about deformation and fracture strength at strain rates greater than 104 s−1 by analyzing the evolution of plane shock waves in the materials under study. This paper presents a short survey of methods for analyzing shock wave phenomena in relaxing media and recent observations of the evolution of elastoplastic shock compression waves in metals, some of which turned out to be unexpected. |
Keywords |
high-rate strain, stress relaxation, shock wave, metal, ideal strength |
References |
1. | G. E. Duvall,
"Propagation of Shock Waves in a Stress-Relaxing Medium,"
in Stress Waves in Anelastic Solids,
Ed. by H. Kolsky and W. Prager
(Springer, Berlin, 1964). |
2. | T. J. Ahrens and G. E. Duvall,
"Stress Relaxation behind Elastic Shock Waves in Rocks,"
J. Geophys. Res.
71 (18), 4349-4360 (1966). |
3. | J. W. Taylor,
"Dislocation Dynamics and Dynamic Yielding,"
J. Appl. Phys.
36 (10), 3146-3150 (1965). |
4. | J. R. Asay, G. R. Fowles, and Y. Gupta,
"Determination of Material Relaxation Properties from Measurements on Decaying Elastic Shock Fronts,"
J. Appl. Phys.
43 (2), 744-746 (1972). |
5. | J. N. Johnson and L. M. Barker,
"Dislocation Dynamics and Steady Plastic Wave Profiles in 6061T6 Aluminum,"
J. Appl. Phys.
40 (11), 4321-4334 (1969). |
6. | L. C. Chhabildas and J. R. Asay,
"Rise-Time Measurements of Shock Transitions in Aluminum, Copper, and Steel,"
J. Appl. Phys.
50 (4), 2749-2756 (1979). |
7. | A. N. Dremin, S. A. Koldunov, and K. K. Shvedkov,
"Shock-Initiated Detonation of Bulk-Density Charges,"
Fiz. Goreniya Vzryva,
No. 1, 103-111 (1971)
[Comb. Expl. Shock Waves (Engl. Transl.)
7 (1), 87-92 (1971)]. |
8. | G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov,
Shock Wave Phenomena in Condensed Media
(Yanus-K, Moscow, 1996)
[in Russian]. |
9. | L. M. Barker and R. E. Hollenbach,
"Shock Wave Study of the α-ε Phase Transition in Iron,"
J. Appl. Phys.
45 (11), 4872-4887 (1974). |
10. | G. I. Kanel,
"Experimental Determination of the Kinetics of Relaxation Processes
during the Shock Compression of Condensing Media,"
Zh. Prikl. Mekh. Tekhn. Fiz.
18 (5), 117-122 (1977)
[J. Appl. Mech. Tech. Phys. (Engl. Transl.)
18 (5), 685-689 (1977)]. |
11. | Y. Gupta, G. E. Duvall, and G. R. Eowles,
"Dislocation Mechanisms for Stress Relaxation in Shocked LiF,"
J. Appl. Phys.
46 (2), 532-546 (1975). |
12. | J. W. Swegle and D. E. Grady,
"Shock Viscosity and the Prediction of Shock Wave Rise Times,"
J. Appl. Phys.
58 (2), 692-701 (1985). |
13. | G. R. Cowan,
"Shock Deformation and the Limiting Shear Strength of Metals,"
Trans. Metal. Soc. AIME
233 (6), 1120-1130 (1965). |
14. | G. V. Garkushin, S. V. Razorenov, and G. I. Kanel,
"Submicrosecond Strength of the D16T Aluminum Alloy at Room and Elevated Temperatures,"
Fiz. Tverd. Tela
50 (5), 805-811 (2008)
[Phys. Solid State (Engl. Transl.)
50 (5), 839-843 (2008)]. |
15. | E. B. Zaretsky and G. I. Kanel,
"Tantalum and Vanadium Response to Shock-Wave Loading at Normal and Elevated Temperatures.
Non-Monotonous Decay of the Elastic Wave in Vanadium,"
J. Appl. Phys.
115 (24), 243502 (2014). |
16. | G. I. Kanel, S. V. Razorenov, and V. E. Fortov,
Shock-Wave Phenomena and the Properties of Condensed Matter
(Springer, New York, 2004). |
17. | E. V. Zaretsky and G. I. Kanel,
"Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point,"
J. Appl. Phys.
114 (8), 083511 (2013). |
18. | G. V. Garkushin, G. I. Kanel, and S. V. Razorenov,
"High Strain Rate Deformation and Fracture of the Magnesium
Alloy Ma2-1 under Shock Wave Loading,"
Fiz. Tverd. Tela
54 (5), 1012-1018 (2012)
[Phys. Solid State (Engl. Transl.)
54 (5), 1079-1085 (2012)]. |
19. | S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al.,
"Behavior of Aluminum near an Ultimate Theoretical Strength
in Experiments with Femtosecond Laser Pulses,"
Pis'ma Zh. Eksp. Teor. Fiz.
92 (8), 568-573 (2010)
[JETP Lett. (Engl. Transl.)
92 (8), 516-520 (2010)]. |
20. | V. H. Whitley, S. D. McGrane, D. E. Eakins, et al.,
"The Elastic-Plastic Response of Aluminum Films to Ultrafast Laser-Generated Shocks,"
J. Appl. Phys.
109, 013505 (2011). |
21. | S. I. Ashitkov, M. B. Agranat, G. I. Kanel, and V. E. Fortov,
"Approaching the Ultimate Shear and Tensile Strength of Aluminum in Experiments with Femtosecond Pulse Laser,"
in Shock Compression of Condensed Media 2011. AIP Conf Proc.,
Ed. by M. L. Elert, et al. (2012),
pp. 1081-1084. |
22. | Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al.,
"Large Elastic Wave Amplitude and Attenuation in Shocked Pure Aluminum,"
J. Appl. Phys.
105 (3), 036107 (2009). |
23. | J. M. Winey, B. M. LaLone, P. B. Trivedi, and Y. M. Gupta,
"Elastic Wave Amplitudes in Shock-Compressed Thin Polycrystalline Aluminum Samples,"
J. Appl. Phys.
106 (7), 073508 (2009). |
24. | G. V. Garkushin, G. I. Kanel, and S. V. Razorenov,
"Resistance to Deformation and Fracture of Aluminum AD1 under Shock-Wave Loading at Temperatures of 20 and 600°C,"
Fiz. Tverd. Tela
52 (11), 2216-2222 (2010)
[Phys. Solid State (Engl. Transl.)
52 (11), 2369-2375 (2010)]. |
25. | T. E. Arvidsson, Y. M. Gupta, and G. E. Duvall,
"Precursor Delay in 1060 Aluminum,"
J. Appl. Phys.
46 (10), 4478 (1975). |
26. | D. M. Clattenbuck, C. R. Krenn, M. L. Cohen, and J. W. Morris,
"Phonon Instabilities and the Ideal Strength of Aluminum,"
Phys. Rev. Lett.
91 (13), 135501 (2003). |
27. | K. Sakino,
"Transition in the Rate Controlling Mechanism of FCC Metals at Very High Strain Rates
and High Temperatures,"
J. Phys. IV France
10, Pr9-57-62 (2000). |
28. | E. V. Zaretsky and G. I. Kanel,
"Plastic Flow in Shock-Loaded Silver at Strain Rates
from 104 s−1 to 107 s−1 and temperatures from 296 K to 1233 K,"
J. Appl. Phys.
110 (7), 073502 (2011). |
29. | S. I. Ashitkov, P. S. Komarov, M. B. Agranat, et al.,
"Achievement of Ultimate Values of the Bulk and Shear Strengths of Iron Irradiated by Femtosecond Laser Pulses,"
Pis'ma Zh. Eksp. Teor. Fiz.
98 (7), 439-444 (2013)
[JETP Lett. (Engl. Transl.)
98 (7), 384-388 (2013)]. |
30. | G. I. Kanel, S. V. Razorenov, G. V. Garkushin, et al.,
"Deformation Resistance and Fracture of Iron over a Wide Strain Rate Range,"
Fiz. Tverd. Tela
56 (8), 1518-1522 (2014)
[Phys. Solid State (Engl. Transl.)
56 (8), 1569-1573 (2014)]. |
31. | R. F. Smith, J. H. Eggert, R. E. Rudd, et al.,
"High Strain-Rate Plastic Flow in Al and Fe,"
J. Appl. Phys.
110 (12), 123515 (2011). |
32. | E. V. Zaretsky and G. I. Kanel,
"Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression,"
J. Appl. Phys.
112 (7), 073504 (2012). |
|
Received |
15 June 2014 |
Link to Fulltext |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|