| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >> |
Yu.G. Pronina, "Study of Possible Void Nucleation and Growth in Solids in the Framework of the Davis-Nadai Deformation Theory," Mech. Solids. 49 (3), 302-313 (2014) |
Year |
2014 |
Volume |
49 |
Number |
3 |
Pages |
302-313 |
DOI |
10.3103/S0025654414030066 |
Title |
Study of Possible Void Nucleation and Growth in Solids in the Framework of the Davis-Nadai Deformation Theory |
Author(s) |
Yu.G. Pronina (St. Petersburg State University, Universitetskii pr. 35, St. Petersburg, 198504 Russia, y.pronina@spbu.ru) |
Abstract |
In the framework of the Davis-Nadai deformation theory, we study the problem of a ball with a central cavity subjected to internal and external pressure. The solution is constructed in the reference configuration for the polynomial material deformation law with possible regard to matter conservation inside the cavity. The obtained solution is analyzed; it is mathematically proved that the limit load exists in the case of uniform compression, and a method for determining this load is given. It is also proved that a new void can be formed in a solid ball in the case of its extension, and the critical load of void formation is estimated. It is shown that the already existing spherical void cannot completely disappear under the action of external pressure (assuming that its shape is preserved and remaining in the framework of the continuity hypothesis). |
Keywords |
Davis-Nadai deformation theory, logarithmic strain, elastoplastic material, thick-walled sphere, void formation, cavitation instability, healing, critical load |
References |
1. | A. A. Il'yushin,
Plasticity, Part 1: Elastoplastic Deformations
(OGIZ, Moscow-Leningrad, 1948)
[in Russian]. |
2. | V. I. Betekhtin, S. Yu. Veselkov, Yu. M. Dal', et al.,
"Theoretical and Experimental Investigation of the Effect
of an Applied Load on Pores in Solids,"
Fiz. Tverd. Tela
45 (4), 618-624 (2003)
[Phys. Solid State (Engl. Transl.)
45 (4), 649-655 (2003)]. |
3. | A. S. Grigoriev,
On the Theory and Problems of Shell Equilibrium under Large Deformations,"
Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela,
No. 1, 163-168 (1970)
[Mech. Solids (Engl. Transl.)]. |
4. | E. P. Kolpak,
Stability of Membrane Shells under Large Strains
(Izd-vo SPbGU, St. Petersburg, 2000)
[in Russian]. |
5. | S. A. Kabrits, E. I. Mukhailovskii, P. E. Tovstik, et al.,
General Nonlinear Theory of Elastic Shells
(Izd-vo SPbGU, St. Petersburg, 2002)
[in Russian]. |
6. | A. I. Lurie,
Nonlinear Theory of Elasticity
(Nauka, Moscow, 1980)
[in Russian]. |
7. | J. M. Ball,
"Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity,"
Phil. Trans. Roy. Soc. London. Ser. A: Math. Phys. Sci.
306 (1496), 557-611 (1982). |
8. | S. A. Stuart,
"Radially Symmetric Cavitation for Hyperelastic Materials,"
Ann. Inst. Henry Poincare - Anal. Nonlin.
2, 33-66 (1985). |
9. | C. O. Horgan and R. Abeyaratne,
"A Bifurcation Problem for Compressible Nonlinearly Elastic Medium:
Growth of a Micro-Void,"
J. Elasticity
16, 189-200 (1986). |
10. | J. Sivaloganathan,
"Uniqueness of Regular and Singular Equilibria for Spherically Symmetric Problems
of Nonlinear Elasticity,"
Arch. Rat. Mech. Anal.
96 (2), 97-136 (1986). |
11. | M.-S. Chou-Wang and C. O. Horgan,
"Void Nucleation and Growth for a Class of Incompressible Nonlinearly Elastic Materials,"
Int. J. Solids Struct.
25, 1239-1254 (1989). |
12. | T. Hao,
"A Theory of the Appearance and Growth of the Micro-Spherical Void,"
Int. J. Fract.
43, 51-55 (1990). |
13. | F. Meynard,
"Existence and Non-Existence Results on the Radially Symmetric Cavitation Problem,"
Quart. Appl. Math.
50, 210-226 (1992). |
14. | C. O. Horgan,
"Void Nucleation and Growth for Compressible Non-Linearly Elastic Material:
An Example,"
Int. J. Solids Struct.
29 (3), 279-291 (1992). |
15. | H.-S. Hou and R. Abeyaratne,
"Cavitation in Elastic and Elastic-Plastic Solids,"
J. Mech. Phys. Solids
40 (3), 571-592 (1992). |
16. | X.-C. Shang and C.-J. Cheng,
"Exact Solutions for Cavitated Bifurcation for Compressible Hyperelastic Materials,"
Int. J. Engng Sci.
39, 1101-1117 (2001). |
17. | J. Diani,
"Irreversible Growth of a Spherical Cavity in Rubber-Like Material:
A Fracture Mechanics Description,"
Int. J. Fract.
112, 151-161 (2001). |
18. | J.-S. Ren and C.-J. Cheng,
"Bifurcation of Cavitation Solutions for Incompressible Transversely
Isotropic Hyperelastic Materials,"
J. Engng Math.
44, 245-257 (2002). |
19. | I. A. Brigadnov,
"The Dual Approach to the Evaluation of the Load-Carrying Capacity of Nonlinearly Elastic Bodies,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 2, 39-46 (2004)
[Mech. Solids (Engl. Transl.)
39 (2), 30-35 (2004)]. |
20. | E. Davis,
"Stress Growth with Strain Variation and "Stress-Strain" Dependence
in Plastic Region for Copper in Complex Stress State,"
in Theory of Plasticity,
Ed. by Yu. N. Rabotnov
(Izd-vo Inostr. Liter., Moscow, 1948)
[in Russian]. |
21. | A. Nadai,
Theory of Flow and Fracture of Solids, Vol. 1
(New York-Toronto-London, 1950; Izd-vo Inostr. Liter., Moscow, 1954). |
22. | R. Hill,
The Mathematical Theory of Plasticity
(Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956). |
23. | R. F. Bishop, R. Hill, and N. F. Mott,
"The Theory of Indentation and Hardness Tests,"
Proc. Phys. Soc.
57, 147-159 (1945). |
24. | F. A. McClintock,
"A Criterion for a Ductile Fracture by the Growth of Holes,"
J. Appl. Mech. (Trans. ASME. Ser. E)
35 (2), 363-371 (1968). |
25. | J. R. Rice and D. M. Tracey,
"On the Ductile Enlargement of Voids in Triaxial Stress Fields,"
J. Mech. Phys. Solids
17 (3), 201-217 (1969). |
26. | Y. Huang, J. W. Hutchinson, and V. Tvergaard,
"Cavitation Instabilities in Elastic-Plastic Solids,"
J. Mech. Phys. Solids
39, 223-242 (1991). |
27. | V. Tvergaard, Y. Huang, and J. W. Hutchinson,
"Cavitation Instabilities in a Power Hardening Elastic-Plastic Solids,"
Europ. J. Mech. Ser. A: Solids
11 (2), 215-231 (1992). |
28. | Yu. M. Dal' and Yu. G. Pronina,
"Deformation of Spherical Pore in Nonlinear-Elastic Solid,"
Izv. Ross. Akad. Nauk. Ser. Fiz.
70 (9), 1341-1343 (2006)
[Bull. Russ. Acad. Sci. Phys. (Engl. Transl.)
70 (9), 1533-1535 (2006)]. |
29. | Yu. M. Dal' and Yu. G. Pronina,
"Void Growth and Healing in Elastic-Plastic Body
under the Action of Hydrostatic Pressure,"
Electronic Journal "Investigated in Russia"
9, 1387-1394 (2006).
URL: http://zhurnal.ape.relarn.ru/articles/2006/148.pdf. |
30. | A. A. Morshchinina,
"Nonlinear Axisymmetric Elasticity Problem for a Hollow Sphere,"
Vestnik S.-Peterburg. Univ. Mat. Mekh. Astr.,
No. 4, 84-88 (2009). |
31. | V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, et al.,
"Excess Free Volume and Mechanical Properties of Amorphous Alloys,"
Fiz. Tverd. Tela
40 (1), 85-89 (1998)
[Sov. Phys. Solid State (Engl. Transl.)
40 (1), 74-78 (1998)]. |
32. | V. I. Smirnov,
Course of Higher Mathematics
(Gostekhizdat, Moscow-Leningrad, 1951)
[in Russian]. |
33. | A. A. Il'yushin,
Plasticity. Foundations of General Mathematical Theory
(Izd-vo AN SSSR, Moscow, 1963)
[in Russian]. |
34. | A. N. Gent and P. B. Lindey,
"Internal Rupture of Bounded Rubber Cylinders in Tension,"
Proc. Roy. Soc. London. Ser. A,
249, 195-205 (1958). |
35. | A. A. Gruzdkov, N. F. Morozov, and Yu. V. Petrov,
"Equal Power Principle in Multilevel Dynamic Fracture of Solids,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 6, 167-172 (2006)
[Mech. Solids (Engl. Transl.)
41 (6), 135-139 (2006)]. |
|
Received |
06 October 2011 |
Link to Fulltext |
|
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|