Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.290-301

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
I.A. Volkov and Yu.G. Korotkikh, "Modeling of Fatigue Life of Materials and Structures under Low-Cycle Loading," Mech. Solids. 49 (3), 290-301 (2014)
Year 2014 Volume 49 Number 3 Pages 290-301
DOI 10.3103/S0025654414030054
Title Modeling of Fatigue Life of Materials and Structures under Low-Cycle Loading
Author(s) I.A. Volkov (Volga State Academy of Water Transport, ul. Nesterova 5, Nizhni Novgorod, 603005 Russia, pmptmvgavt@yandex.ru)
Yu.G. Korotkikh (Volga State Academy of Water Transport, ul. Nesterova 5, Nizhni Novgorod, 603005 Russia)
Abstract A damaged medium model (DMM) consisting of three interconnected components (relations determining the cyclic elastoplastic behavior of the material, kinetic damage accumulation equations, and the strength criterion for the damaged material) was developed to estimate the stress-strain state and the fatigue life of important engineering objects. The fatigue life of a strip with a cut under cyclic loading was estimated to obtain qualitative and quantitative estimates of the DMM constitutive relations under low-cycle loading. It was shown that the considered version of the constitutive relations reliably describes the main effects of elastoplastic deformation and the fatigue life processes of materials and structures.
Keywords stress-strain state, plasticity, failure, low-cycle fatigue, damage accumulation, fatigue life, service life
References
1.  A. F. Mitenkov, V. B. Kaidalov, and Yu. G. Korotkikh, Methods for Justifying the Service Life of Nuclear Power Plants (Mashinostroenie, Moscow, 2007) [in Russian].
2.  A. F. Mitenkov and Yu. G. Korotkikh, "To the Problem of Construction of Operation Monitoring of the Service Life of Equipment and Systems of Nuclear Power Plants," Probl. Mashinostr. Nadezhn. Mashin, No. 4, 105-116 (2003).
3.  I. A. Volkov and Yu. G. Korotkikh, Equations of State of Viscoelastoplastic Damaged Media (Fizmatgiz, Moscow, 2008) [in Russian].
4.  J. Collins, Failure of Materials in Mechanical Design. Analysis, Prediction, Prevention (Wiley, New York, 1981; Mir, Moscow, 1984).
5.  K. Ellyin and D. Kujawski, "An Energy-Based Fatigue Failure Criterion," J. "Microstructure and Mechanical Behavior of Materials" EAMS 11, 591-601 (1986).
6.  V. G. Troshchenko, Deformation and Fracture of Metals in High-Cycle Loading (Naukova Dumka, Kiev, 1981) [in Russian].
7.  P. Perzyna, "Constitutive Modeling of Dissipative Solids for Postcritical Behavior and Fracture," Trans. ASME. J. Engng Mater. Technol. 106 (4), 410-419 (1984) [Teoret. Osnovy Inzh. Raschetov (Russ. Transl.) 106 (4), 107-117 (1984)].
8.  J. T. Boyle and J. Spence, Stress Analysis for Creep (Butterworths, London, 1982; Mir, Moscow, 1986).
9.  J. L. Chaboche, "Continuous Damage Mechanics - a Tool to Describe Phenomena before Crack Initiation," Engng Des. 64, 233-247 (1981).
10.  Y. S. Garud, "A New Approach to the Evaluation of Fatigue under Multiaxial Loadings," Trans. ASME. J. Engng Mater. Technol. 103 (2), 118-125 (1981) [Teoret. Osnovy Inzh. Raschetov (Russ. Transl.) 103 (2), 41-51 (1981)].
11.  S. R. Bodner and U. S. Lindholm, "An Incremental Criterion for Time-Dependent Failure of Materials," Trans. ASME. J. Engng Mater. Technol. 98 (2), 140-145 (1976) [Teoret. Osnovy Inzh. Raschetov (Russ. Transl.) 98 (2), 51-53 (1976)].
12.  A. N. Romanov, Fracture under Low-Cycle Loading (Nauka, Moscow, 1988) [in Russian].
13.  V. V. Novozhilov, "On Plastic Cavitation," Prikl. Mat. Mekh. 29 (4), 681-689 (1965) [J. Appl. Math. Mech. (Engl. Transl.) 29 (4), 811-819 (1965)].
14.  J. Lemaitre, "A Continuous Damage Mechanics Model for Ductile Fracture," Trans. ASME. J. Engng Mater. Technol. 107 (1), 83-89 (1985) [Teoret. Osnovy Inzh. Raschetov (Russ. Transl.) 107 (1), 90-97 (1985)].
15.  D. Socie, "Multiaxial Fatigue Damage Models," Trans. ASME. J. Engng Mater. Technol. 109 (4), 293-298 (1987) [Teoret. Osnovy Inzh. Raschetov (Russ. Transl.), No. 9, 9-21 (1988)].
16.  I. A. Volkov, Yu. G. Korotkikh, and I. S. Tarasov, "Modeling Complex Plastic Deformation and Fracture of Metals under Disproportionate Loading," Zh. Prikl. Mekh. Tekhn. Fiz. 50 (5), 193-205 (2009) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 50 (5), 891-900 (2009)].
17.  I. A. Volkov, Yu. G. Korotkikh, and I. S. Tarasov, "Numerical Modeling of Damage Accumulation under Complex Plastic Deformation," Vych. Mekh. Sploshn. Sred 2 (1), 5-19 (2009).
18.  Kh. I. Isikava and K. Sasaki, "Numerical Calculations of a Strip with a Hole in Cyclic Loading," Sovrem. Mashinostr. Ser. B, 50-56 (1991).
Received 16 February 2011
Link to Fulltext
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100