Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-3pp.302-313

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Yu.G. Pronina, "Study of Possible Void Nucleation and Growth in Solids in the Framework of the Davis-Nadai Deformation Theory," Mech. Solids. 49 (3), 302-313 (2014)
Year 2014 Volume 49 Number 3 Pages 302-313
DOI 10.3103/S0025654414030066
Title Study of Possible Void Nucleation and Growth in Solids in the Framework of the Davis-Nadai Deformation Theory
Author(s) Yu.G. Pronina (St. Petersburg State University, Universitetskii pr. 35, St. Petersburg, 198504 Russia, y.pronina@spbu.ru)
Abstract In the framework of the Davis-Nadai deformation theory, we study the problem of a ball with a central cavity subjected to internal and external pressure. The solution is constructed in the reference configuration for the polynomial material deformation law with possible regard to matter conservation inside the cavity. The obtained solution is analyzed; it is mathematically proved that the limit load exists in the case of uniform compression, and a method for determining this load is given. It is also proved that a new void can be formed in a solid ball in the case of its extension, and the critical load of void formation is estimated. It is shown that the already existing spherical void cannot completely disappear under the action of external pressure (assuming that its shape is preserved and remaining in the framework of the continuity hypothesis).
Keywords Davis-Nadai deformation theory, logarithmic strain, elastoplastic material, thick-walled sphere, void formation, cavitation instability, healing, critical load
References
1.  A. A. Il'yushin, Plasticity, Part 1: Elastoplastic Deformations (OGIZ, Moscow-Leningrad, 1948) [in Russian].
2.  V. I. Betekhtin, S. Yu. Veselkov, Yu. M. Dal', et al., "Theoretical and Experimental Investigation of the Effect of an Applied Load on Pores in Solids," Fiz. Tverd. Tela 45 (4), 618-624 (2003) [Phys. Solid State (Engl. Transl.) 45 (4), 649-655 (2003)].
3.  A. S. Grigoriev, On the Theory and Problems of Shell Equilibrium under Large Deformations," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 163-168 (1970) [Mech. Solids (Engl. Transl.)].
4.  E. P. Kolpak, Stability of Membrane Shells under Large Strains (Izd-vo SPbGU, St. Petersburg, 2000) [in Russian].
5.  S. A. Kabrits, E. I. Mukhailovskii, P. E. Tovstik, et al., General Nonlinear Theory of Elastic Shells (Izd-vo SPbGU, St. Petersburg, 2002) [in Russian].
6.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
7.  J. M. Ball, "Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity," Phil. Trans. Roy. Soc. London. Ser. A: Math. Phys. Sci. 306 (1496), 557-611 (1982).
8.  S. A. Stuart, "Radially Symmetric Cavitation for Hyperelastic Materials," Ann. Inst. Henry Poincare - Anal. Nonlin. 2, 33-66 (1985).
9.  C. O. Horgan and R. Abeyaratne, "A Bifurcation Problem for Compressible Nonlinearly Elastic Medium: Growth of a Micro-Void," J. Elasticity 16, 189-200 (1986).
10.  J. Sivaloganathan, "Uniqueness of Regular and Singular Equilibria for Spherically Symmetric Problems of Nonlinear Elasticity," Arch. Rat. Mech. Anal. 96 (2), 97-136 (1986).
11.  M.-S. Chou-Wang and C. O. Horgan, "Void Nucleation and Growth for a Class of Incompressible Nonlinearly Elastic Materials," Int. J. Solids Struct. 25, 1239-1254 (1989).
12.  T. Hao, "A Theory of the Appearance and Growth of the Micro-Spherical Void," Int. J. Fract. 43, 51-55 (1990).
13.  F. Meynard, "Existence and Non-Existence Results on the Radially Symmetric Cavitation Problem," Quart. Appl. Math. 50, 210-226 (1992).
14.  C. O. Horgan, "Void Nucleation and Growth for Compressible Non-Linearly Elastic Material: An Example," Int. J. Solids Struct. 29 (3), 279-291 (1992).
15.  H.-S. Hou and R. Abeyaratne, "Cavitation in Elastic and Elastic-Plastic Solids," J. Mech. Phys. Solids 40 (3), 571-592 (1992).
16.  X.-C. Shang and C.-J. Cheng, "Exact Solutions for Cavitated Bifurcation for Compressible Hyperelastic Materials," Int. J. Engng Sci. 39, 1101-1117 (2001).
17.  J. Diani, "Irreversible Growth of a Spherical Cavity in Rubber-Like Material: A Fracture Mechanics Description," Int. J. Fract. 112, 151-161 (2001).
18.  J.-S. Ren and C.-J. Cheng, "Bifurcation of Cavitation Solutions for Incompressible Transversely Isotropic Hyperelastic Materials," J. Engng Math. 44, 245-257 (2002).
19.  I. A. Brigadnov, "The Dual Approach to the Evaluation of the Load-Carrying Capacity of Nonlinearly Elastic Bodies," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 39-46 (2004) [Mech. Solids (Engl. Transl.) 39 (2), 30-35 (2004)].
20.  E. Davis, "Stress Growth with Strain Variation and "Stress-Strain" Dependence in Plastic Region for Copper in Complex Stress State," in Theory of Plasticity, Ed. by Yu. N. Rabotnov (Izd-vo Inostr. Liter., Moscow, 1948) [in Russian].
21.  A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1 (New York-Toronto-London, 1950; Izd-vo Inostr. Liter., Moscow, 1954).
22.  R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956).
23.  R. F. Bishop, R. Hill, and N. F. Mott, "The Theory of Indentation and Hardness Tests," Proc. Phys. Soc. 57, 147-159 (1945).
24.  F. A. McClintock, "A Criterion for a Ductile Fracture by the Growth of Holes," J. Appl. Mech. (Trans. ASME. Ser. E) 35 (2), 363-371 (1968).
25.  J. R. Rice and D. M. Tracey, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," J. Mech. Phys. Solids 17 (3), 201-217 (1969).
26.  Y. Huang, J. W. Hutchinson, and V. Tvergaard, "Cavitation Instabilities in Elastic-Plastic Solids," J. Mech. Phys. Solids 39, 223-242 (1991).
27.  V. Tvergaard, Y. Huang, and J. W. Hutchinson, "Cavitation Instabilities in a Power Hardening Elastic-Plastic Solids," Europ. J. Mech. Ser. A: Solids 11 (2), 215-231 (1992).
28.  Yu. M. Dal' and Yu. G. Pronina, "Deformation of Spherical Pore in Nonlinear-Elastic Solid," Izv. Ross. Akad. Nauk. Ser. Fiz. 70 (9), 1341-1343 (2006) [Bull. Russ. Acad. Sci. Phys. (Engl. Transl.) 70 (9), 1533-1535 (2006)].
29.  Yu. M. Dal' and Yu. G. Pronina, "Void Growth and Healing in Elastic-Plastic Body under the Action of Hydrostatic Pressure," Electronic Journal "Investigated in Russia" 9, 1387-1394 (2006). URL: http://zhurnal.ape.relarn.ru/articles/2006/148.pdf.
30.  A. A. Morshchinina, "Nonlinear Axisymmetric Elasticity Problem for a Hollow Sphere," Vestnik S.-Peterburg. Univ. Mat. Mekh. Astr., No. 4, 84-88 (2009).
31.  V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, et al., "Excess Free Volume and Mechanical Properties of Amorphous Alloys," Fiz. Tverd. Tela 40 (1), 85-89 (1998) [Sov. Phys. Solid State (Engl. Transl.) 40 (1), 74-78 (1998)].
32.  V. I. Smirnov, Course of Higher Mathematics (Gostekhizdat, Moscow-Leningrad, 1951) [in Russian].
33.  A. A. Il'yushin, Plasticity. Foundations of General Mathematical Theory (Izd-vo AN SSSR, Moscow, 1963) [in Russian].
34.  A. N. Gent and P. B. Lindey, "Internal Rupture of Bounded Rubber Cylinders in Tension," Proc. Roy. Soc. London. Ser. A, 249, 195-205 (1958).
35.  A. A. Gruzdkov, N. F. Morozov, and Yu. V. Petrov, "Equal Power Principle in Multilevel Dynamic Fracture of Solids," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 167-172 (2006) [Mech. Solids (Engl. Transl.) 41 (6), 135-139 (2006)].
Received 06 October 2011
Link to Fulltext
<< Previous article | Volume 49, Issue 3 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100