Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-1pp.79-85

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
D.V. Georgievskii, "Asymptotic Integration of the Prandtl Problem in Dynamic Statement," Mech. Solids. 48 (1), 79-85 (2013)
Year 2013 Volume 48 Number 1 Pages 79-85
DOI 10.3103/S0025654413010081
Title Asymptotic Integration of the Prandtl Problem in Dynamic Statement
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, georgiev@mech.math.msu.su)
Abstract The dynamic statement of the problem on the compression of a thin ideally rigid-plastic layer by absolutely rigid plates moving at constant velocities towards each other contains two characteristic dimensionless parameters. One of them-the small geometric parameter α defined as the layer thickness-to-length ratio-explicitly depends on time, and its order of smallness with respect to the other dimensionless parameter-the time-independent reciprocal Euler number-increases with time. The second parameter is assumed to be much less than unity as well. An asymptotic integration procedure is used to construct the solutions of this problem as expansions in integer powers of α; this procedure depends on the parameter ratio, i.e., is different on different time intervals. The possibility of seeking the solution in this form is justified. It is also shown that the asymptotic expansions can be matched smoothly in time.

The parameter ratio at which the correction due to inertial terms in the expression for the pressure turns out to be of the same order as the terms occurring in the classical Prandtl solution of the quasistatic problem is determined.
Keywords ideally rigid-plastic body, dynamics, Prandtl problem, spreading, compression, asymptotic expansion, Euler number
References
1.  L. Prandtl, "Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht," ZAMM 3 (6), 401-406 (1923) [in Theory of Plasticity (Izd-vo Inostr. Lit., Moscow, 1948), pp. 102-113].
2.  A. A. Il'yushin, "Complete Plasticity in Processes of Flow between Rigid Surfaces, an Analogy with Sand Embarkment and Several Applications," Prikl. Mat. Mekh. 19 (6), 693-713 (1955).
3.  V. V. Sokolovskii, The Theory of Plasticity (Vysshaya Shkola, Moscow, 1969) [in Russian].
4.  A. Yu. Ishlinskii and D. D. Ivlev, The Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].
5.  S. S. Grigoryan, "A Problem of L. Prandtl and the Theory of Flow of a Plastic Material over Surfaces," Dokl. Akad. Nauk SSSR 257 (5), 1075-1077 (1981) [Sov. Phys. Dokl. (Engl. Transl.) 26, 399 (1981)].
6.  R. Hill, The Mathematical Theory of Plasticity (Clarendon, Oxford, 1950; Gostekhizdat, Moscow, 1956).
7.  A. A. Il'yushin, Collected Works, Vol. 4: Modeling of Dynamic Processes in Solids and Engineering Applications (Fizmatlit, Moscow, 2009) [in Russian].
8.  G. I. Bykovtsev, "On Compression of a Plastic Layer by Rigid Rough Plates with Forces of Inertia Taken into Account," Izv. Akad. Nauk SSSR. OTN. Mekh. Mashinostr., No. 6, 140-142 (1960).
9.  B. D. Annin, "Symmetry Analysis of Equations of Mises Plastic Flow," in Elasticity and Inelasticity (Izd-vo MGU, Moscow, 2011), pp. 101-105 [in Russian].
10.  I. A. Kiiko and B. A. Kadymov, "Generalization of the Prandtl Problem on the Compression of a Strip," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 4, 50-56 (2003) [Moscow Univ. Mech. Bull. (Engl. Transl.) 58 (4), 31-36 (2003)].
11.  D. V. Georgievskii, "Asymptotic Expansions and the Possibilities to Drop the Hypotheses in the Prandtl Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 83-93 (2009) [Mech. Solids (Engl. Transl.) 44 (1), 70-78 (2009)].
12.  E. Nayar, "Several Plane Inertial Flows of Plastic Materials," in Continuum Mechanics (Izd-vo Bolgar. Akad. Nauk, Sofiya, 1968), pp. 269-277.
13.  A. L. Gol'denveizer, "Derivation of an Approximate Theory of Bending of a Plate by the Method of Asymptotic Integration of the Equations of the Theory of Elasticity," Prikl. Mat. Mekh. 26 (4), 668-686 (1962) [J. Appl. Math. Mech. (Engl. Transl.) 26 (4), 1000-1025 (1962)].
14.  D. V. Georgievskii, "Axisymmetric Analog of the Prandtl Problem," Dokl. Ross. Akad. Nauk 422 (3), 331-333 (2008) [Dokl. Phys. (Engl. Transl.) 53 (9), 504-506 (2008)].
15.  D. V. Georgievskii, "Asymptotic Analysis of Plastic Flow along a Generating Element in a Thin Cylindrical Layer," Zh. Prikl. Mekh. Tekhn. Fiz. 51 (5), 111-119 (2010).
Received 03 March 2011
Link to Fulltext
<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100