Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-1pp.68-78

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
S.G. Pshenichnov, "Nonstationary Dynamic Problems of Nonlinear Viscoelasticity," Mech. Solids. 48 (1), 68-78 (2013)
Year 2013 Volume 48 Number 1 Pages 68-78
DOI 10.3103/S002565441301007X
Title Nonstationary Dynamic Problems of Nonlinear Viscoelasticity
Author(s) S.G. Pshenichnov (Institute of Mechanics, Lomonosov Moscow State University, Michurinskii pr-t 1, Moscow, 119899 Russia, serp56@yandex.ru)
Abstract Dynamic problems describing transient wave processes in linearly viscoelastic solids are considered for bounded domains of perturbation propagation and bounded creep of the material. The integral Laplace transform with respect to time is applied to the original problem, and several statements about the properties of Laplace transforms simplifying the construction of the original functions are stated. Relations establishing a correspondence between relaxation kernels that belong to various function classes but nevertheless affect the transient processes in a similar way are proposed. The results justifying these relations in a certain range of the input data are presented.
Keywords dynamics of viscoelastic bodies, wave process, relaxation kernel
References
1.  E. I. Shemyakin, "Propagation of Nonstationary Perturbations in a Viscoelastic Medium," Dokl. Akad. Nauk SSSR 104 (1), 34-37 (1955).
2.  M. Kh. Il'yasov, "Solutions of Inhomogeneous Wave Equations of Linear Viscoelasticity." Dokl. Akad. Nauk AzSSR 36 (12), 13-17 (1980).
3.  A. A. Lokshin and Yu. V. Suvorova, Mathematical Theory of Wave Propagation in Media with Memory (Izd-vo MGU, Moscow, 1982) [in Russian].
4.  I. G. Filippov and O. A. Egorychev, Wave Processes in Linear Viscoelastic Media (Mashinostroenit, Moscow, 1983) [in Russian].
5.  F. B. Badalov, Methods for Solving Integral and Integro-Differential Equations of Hereditary Viscoelasticity (Mekhnat, Tashkent, 1987) [in Russian].
6.  V. I. Zheltkov, L. A. Tolokonnikov, and N. G. Khromova, "Transfer Functions in Viscoelastic Body Dynamics," Dokl. Ross. Akad. Nauk 329 (6), 718-719 (1993). [Dokl. Phys. (Engl. TRansl.) 38 (4), 149-150 (1993)].
7.  S. A. Lychev, "Coupled Dynamic Thermoviscoelasticity Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 95-113 (2008) [Mech. Solids (Engl. Transl.) 43 (5), 769-784 (2008)].
8.  D. S. Berry and S. C. Hunter, "The Propagation of Dynamic Stresses in Visco-Elastic Rods," J. Mech. Phys. Solids 4 (2), 72-95 (1956).
9.  O. W. Dillon, "Transient Stresses in Nonhomogeneous Viscoelastic (Maxwell) Materials," J. Aerospace Sci. 29 (3), 284-288 (1962).
10.  H. Kolsky, "Stress Waves in Anelastic Solids," J. Geophys. Res. 68 (4), 1193-1194 (1963).
11.  B. D. Coleman, M. E. Gurtin, and I. R. Herrera, "Waves in Materials with Memory," Arch. Ration. Mech. Anal. 19 (1), 1-19; (4), 17-298 (1965).
12.  Lin Cong-mou and Yang Lin-de, "Analytic Solution on Propagating Law of Stress Wave from Explosion of Extended Charge in Linear Viscoelastic Medium," J. Shandong Univ. Sci. Technol. Natur. Sci. 20 (3), 1-3 (2001).
13.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].
14.  S. G. Pshenichnov, "Analytic Solution of One-Dimensional Problems of Dynamics of Piecewise Homogeneous Viscoelastic Bodies," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 95-103 (1991) [Mech. Solids (Engl. Transl.)].
15.  S. G. Pshenichnov, "To the Problem of Studies of Nonstationary Processes in Linearly Viscoelastic Bodies with Variable Poisson Ratio," Izv. Tulsk. Gos. Univ. Ser. Mat. Mekh. Inf. 11 (2), 116-126 (2005).
16.  S. G. Pshenichnov and M. Yu. Stavrovskaya, "Axially Symmetric Problem of Dynamics for a Linearly Viscoelastic Hollow Cylinder of Finite Length," Izv. Tulsk. Gos. Univ. Ser. Mat. Mekh. Inf. 12 (2), 165-176 (2006).
17.  S. G. Pshenichnov and M. Yu. Stavrovskaya, "Manifestation of Hereditary Properties of Materials in Nonstationary Dynamics of a Linearly Viscoelastic Cylinder of Finite Length," Izv. Tulsk. Gos. Univ. Ser. Mat. Mekh. Inf. 13 (2), 156-171 (2007).
Received 22 November 2010
Link to Fulltext
<< Previous article | Volume 48, Issue 1 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100