Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-6pp.646-653

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 47, Issue 6 / 2012 | Next article >>
S.M. Mkhitaryan, "Solution of the First Boundary Value Problem of Nonlinear Theory of Steady-State Creep for a Half-Space in Antiplane Deformation," Mech. Solids. 47 (6), 646-653 (2012)
Year 2012 Volume 47 Number 6 Pages 646-653
DOI 10.3103/S0025654412060064
Title Solution of the First Boundary Value Problem of Nonlinear Theory of Steady-State Creep for a Half-Space in Antiplane Deformation
Author(s) S.M. Mkhitaryan (Institute of Mechanics, National Academy of Sciences of Republic of Armenia, 24b Marshal Baghramian ave., Erevan, 0019, Republic of Armenia, smkhitaryan@mechins.sci.am)
Abstract The first boundary value problem of nonlinear theory of steady-state creep with power-law relationship between the stresses and the strain rates is considered for a half-space under conditions of antiplane (out-of-plane) deformation when tangential distributed forces are given on the half-space boundary. By using the introduced harmonic pseudostress function, we reduce solving this problem to solving a nonlinear singular integral equation admitting an exact solution.
Keywords antiplane (out-of-plane) deformation, creep, power-law dependence, pseudostress function, nonlinear integral equation
References
1.  N. Kh. Arutyunyan, "The Plane Contact Problem of the Theory of Creep," Prikl. Mat. Mekh. 23 (5), 901-924 (1959) [J. Appl. Math. Mech. (Engl. Transl.) 23 (5), 1283-1313 (1959)].
2.  N. Kh. Arutyunyan, "Plane Contact Problem of Creeping with Power-Law Strengthening of the Material," Izv. Akad. Armyan. SSR. Ser. Fiz.-Mat. Nauk 12 (2), 77-105 (1959) [Sov. J. Contemporary Math. Anal. (Engl. Transl.)]
3.  V. M. Alexandrov and S. R. Brudnyi, "On the Method of Generalized Superposition in Contact Problem of Antiplane Shear," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 71-78 (1986) [Mech. Solids (Engl. Transl.)].
4.  J. R. Rice, Mathematical Analysis in the Mechanics of Fracture. Fracture, Vol. 2 (Mir, Moscow, 1975), pp. 204-335 [in Russian].
5.  Y. S. Lee and H. Gong, "Application of Complex Variables and Pseudostress Function to Power-Law Materials and Stress Analysis of Single Rigid Inclusion in Power-Law Materials to Simple Tension and Pure Shear," Int. J. Mech. Sci. 29 (10/11), 669-694 (1987).
6.  N. Kh. Arutyunyan and A. V. Manzhirov, Contact Problems of the Theory of Creep (Izd-vo Inst. Mekaniki NAN RA, Erevan, 1999) [in Russian].
7.  L. M. Kachanov, Theory of Creep (Fizmatgiz, Moscow, 1960) [in Russian].
8.  L. M. Kachanov, Foundations of Fracture Mechanics (Nauka, Moscow, 1974) [in Russian].
9.  N. I. Muskhelishvili, Several Fundamental Problems of Mathematical Theory of Elasticity (Nauka, Moscow, 1966) [in Russian].
10.  Yu. A. Brychkov and A. P. Prudnikov, Integral Transformations of Generalized Functions (Nauka, Moscow, 1977) [in Russian].
11.  H. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, 1954; Nauka, Moscow, 1969).
Received 27 July 2012
Link to Fulltext
<< Previous article | Volume 47, Issue 6 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100