Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-6pp.654-664

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 47, Issue 6 / 2012 | Next article >>
S.E. Aleksandrov and R.V. Goldstein, "Generalization of the Prandtl Solution to the Case of Axisymmetric Deformation of Materials Obeying the Double Shear Model," Mech. Solids. 47 (6), 654-664 (2012)
Year 2012 Volume 47 Number 6 Pages 654-664
DOI 10.3103/S0025654412060076
Title Generalization of the Prandtl Solution to the Case of Axisymmetric Deformation of Materials Obeying the Double Shear Model
Author(s) S.E. Aleksandrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, sergei_alexandrov@yahoo.com)
R.V. Goldstein (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, goldst@ipmnet.ru)
Abstract A semianalytic solution of the problem on the compression of an annular layer of a plastic material obeying the double shear model on a cylindrical mandrel is obtained. The approximate statement of boundary conditions, which cannot be satisfied exactly in the framework of the constructed solution, is based on the same assumptions as the statement of the classical plasticity problem of compression of a material layer between rough plates (Prandtl's problem). It is assumed that the maximum friction law is satisfied on the inner surface of the layer. The solution is singular near this surface. The strain rate intensity factor is calculated, and its dependence on the process and material parameters is shown.
Keywords strain rate intensity factor, singular velocity field, semianalytic solution, double shear model
References
1.  R. Hill, The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford, 1950; Gostekhizdat, Moscow, 1956).
2.  L. M. Kachanov, The Theory of Creep (Fizmatgiz, Moscow, 1960; Nat. Lending Lib., 1967).
3.  A. I. Kuznetsov, "The Problem on the Inhomogeneous Layer," Arch. Mech. Stos. 12 (2), 163-172 (1960).
4.  V. N. Dudukalenko and D. D. Ivlev, "Compression of Bands of Plastic Material which can be Strengthened with Rigid Rough Plates," Dokl. Akad. Nauk SSSR 153 (5), 1024-1026 (1963) [Sov. Phys. Dokl. (Engl. Transl.) 8, 1252-1254 (1964)].
5.  J. Najar, "Inertia Effects in the Problem of Compression of a Perfectly Plastic Layer between Two Rigid Plates," Arch. Mech. Stos. 19 (1), 129-149 (1967).
6.  E. A. Marshall, "The Compression of a Slab of Ideal Soil between Rough Plates," Acta Mech. 3, 82-92 (1967).
7.  I. F. Collins and S. A. Mequid, "On the Influence of Hardening and Anisotropy on the Plane-Strain Compression of Thin Metal Strip," Trans. ASME. J. Appl. Mech. 44 (2), 271-278 (1977).
8.  M. J. Adams, B. J. Briscoe, G. M. Corfield, et al., "An Analysis of the Plane-Strain Compression of Viscoplastic Materials," Trans. ASME. J. Appl. Mech. 64 (2), 420-424 (1997).
9.  R. I. Nepershin, "Influence of Heat Transfer on the Nonisothermic Plane Flow in Compression of a Thin Blank between Plane Punches," Probl. Mashinostr. Nadezh. Mashin, No. 1, 96-103 (1997).
10.  S. E. Aleksandrov, I. D. Baranova, and G. Mishuris, "Compression of a Viscoelastic Layer between Rough Parallel Plates," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 33-39 (2008) [Mech. Solids (Engl. Transl.) 43 (6), 863-869 (2008)].
11.  A. J. M. Spencer, "A Theory of the Kinematics of Ideal Soils under Plane Strain Conditions," J. Mech. Phys. Solids 12, 337-351 (1964).
12.  A. J. M. Spencer, "Deformation of Ideal Granular Materials," in Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Ed. by H. G. Hopkins and M. J. Sewell (Pergamon Press, Oxford, 1982), pp. 607-652.
13.  W. A. Spitzig, R. J. Sober, and O. Richmond, "The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory," Metallurg. Trans. 7A (11), 1703-1710 (1976).
14.  A. J. M. Spencer, "A Theory of the Failure of Ductile Materials Reinforced by Elastic Fibres," Int. J. Mech. Sci. 7, 197-209 (1965).
15.  S. E. Aleksandrov and Y.-R. Jeng, "A Generalization of Prandtl's and Spencer's Solutions on Axisymmetric Viscous Flow," Arch. Appl. Mech. 81 (4), 437-449 (2011).
16.  S. E. Aleksandrov and E. A. Lyamina, "Singular Solutions for Plane Plastic Flow of Pressure-Dependent Materials," Dokl. Ross. Akad. Nauk 383 (4), 492-495 (2002) [Dokl. Phys. (Engl. Transl.) 47 (4), 308-311 (2002)].
17.  S. E. Aleksandrov, "Singular Solutions in an Axisymmetric Flow of a Medium Obeying the Double Shear Model," Zh. Prikl. Mekh. Tekhn. Fiz. 46 (5), 180-186 (2005) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 46 (5), 766-771 (2005)].
18.  T. A. Trunina and E. A. Kokovkin, "Formation of Highly Dispersed Structure in Surface Layers of Steel under Combined Treatment with Hydraulic Forging," Probl. Mashinostr. Nadezh. Mashin, No. 2, 71-74 (2008).
19.  S. E. Aleksandrov, D. Z. Grabko, and O. A. Shikimaka, "To the Determination of Intensive Strain Layer Thickness near the Friction Surface in Metal Forming Processes," Probl. Mashinostr. Nadezh. Mashin, No. 3, 72-78 (2009).
20.  S. E. Aleksandrov and E. A. Lyamina, "Prediction of Fracture in the Vicinity of Friction Surfaces in Metal Forming Processes," Zh. Prikl. Mekh. Tekhn. Fiz. 47 (5), 169-174 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (5), 757-761 (2006)].
21.  E. A. Lyamina and S. E. Aleksandrov, "Application of the Strain Rate Intensity Factor to Modeling Material Behavior in the Vicinity of Frictional Interfaces," in Lecture Notes in Applied and Computational Mechanics, Vol. 58: Trends in Computational Contact Mechanics, Ed. by Giorgio Zavarise and Peter Wriggers (Springer, 2011), pp. 291-320.
22.  S. E. Aleksandrov and E. A. Lyamina, "On Constructing the Theory of Ductile Fracture near Friction Surfaces," Zh. Prikl. Mekh. Tekhn. Fiz. 52 (4), 183-190 (2011) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 52 (4), 657-663 (2011)].
23.  S. E. Aleksandrov, "The Strain Rate Intensity Factor and Its Applications: A Review," Mater. Sci. Forum 623, 1-20 (2009).
24.  S. E. Aleksandrov and E. A. Lyamina, Strain Rate Intensity Factor in Double Shear Model (LAP Lambert Academic Publishing GmbH&Co, Saarbrücken, 2011).
25.  S. E. Aleksandrov and O. Richmond, "Singular Plastic Flow Fields near Surfaces of Maximum Friction Stress," Int. J. Nonlin. Mech. 36 (1), 1-11 (2001).
26.  R. Z. Valiev, R. K. Islamgaliev, and I. V. Aleksandrov, "Bulk Nanostructured Materials from Severe Plastic Deformation," Prog. Mater. Sci. 45, 103-189 (2000).
27.  S. E. Aleksandrov and R. V. Goldstein, "Kinetic Equation for the Grain Size in Processes of Intense Plastic Deformation," Dokl. Ross. Akad. Nauk 429 (6), 754-757 (2009) [Dokl. Phys. (Engl. Transl.) 54 (12), 553-556 (2009)].
Received 05 August 2012
Link to Fulltext
<< Previous article | Volume 47, Issue 6 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100