Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2012-4pp.463-474

Archive of Issues

Total articles in the database: 10864
In Russian (»Á‚. –ņÕ. Ő““): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, and F.Z. Utyashev, "Using Intensive Plastic Deformations for Manufacturing Bulk Nanostructure Metallic Materials," Mech. Solids. 47 (4), 463-474 (2012)
Year 2012 Volume 47 Number 4 Pages 463-474
DOI 10.3103/S0025654412040115
Title Using Intensive Plastic Deformations for Manufacturing Bulk Nanostructure Metallic Materials
Author(s) R.Z. Valiev (Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K.†Marksa†12, Ufa, Bashkortostan, 450000 Russia,
N.A. Enikeev (Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K.†Marksa†12, Ufa, Bashkortostan, 450000 Russia,
M.Yu. Murashkin (Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K.†Marksa†12, Ufa, Bashkortostan, 450000 Russia)
F.Z. Utyashev (Institute for Metals Superplasticity Problems, Russian Academy of Sciences, St.†Khalturina†39, Ufa, 450001 Russia,
Abstract The results of studies concerned with new trabds in the development of intensive plastic deformation methods for manufacturing nanostructure metals and alloys are presented. Much attention is paid to the mechanical properties of bulk nanomaterials.
Keywords intensive plastic deformation, nanostructure material, gain boundary, mechanical property, microstructure, segregation
1.  E. Thomsen, C. Yang, and S. Kobayashi, Mechanics of Plastic Deformations in Metal Processing (Macmillan, New York, 1965; Mashinostroenie, Moscow, 1969).
2.  A. A. Il'yushin, Continuum Mechanics (Izd-vo MGU, Moscow, 1990) [in Russian].
3.  V. B. Rybin, Large Plastic Deformations and Metal Fracture (Mashinostroenie, Moscow, 1986) [in Russian].
4.  I. Saunders and J. Nutting, "Deformation of Metals to High Strains Using Combinations of Torsion and Compression," Metals. Sci. 18 (12), 571-576 (1984).
5.  S. Erbel, "Mechanical Properties and Structure of Extremely Strain-Hardened Copper," Metals. Tech. 6 (12), 482-486 (1979).
6.  J. F. Bell, The Experimental Foundations of Solid Mechanics, Parts 1 and 2 (Springer, New York, 1973; Nauka, Moscow, 1984).
7.  P. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952; Izd-vo Inostr. Lit., Moscow, 1955).
8.  H. L. Pugh (Editor), Mechanical Properties of Material under High Pressure, Vols. 1 and 2 (Mir, Moscow, 1973), [in Russian].
9.  N. A. Smirnova, B. I. Levit, V. I. Pilyugin, et al., "Evolution of Structure of FCC Single Crystals during Strong Plastic Deformation," Fiz. Metal. Metalloved. 61 (6), 1170-1177 (1986) [Phys. Met. Metallography (Engl. Transl.) 61 (6), 127-134 (1986)].
10.  V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. P. Kopylov, "Plastic Working of Metals by Simple Shear," Izv. Akad. Nauk SSSR. Metally, No. 1, 115-123 (1981) [Russ. Metallurgy (Metally) (Engl. Transl.) No. 1, 99-105 (1981)].
11.  R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, "Plastic Deformations of Alloys with Submicro-Grained Structure," Mater. Sci. Engng. A 137 (1), 35-40 (1991).
12.  R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, "Structure and Properties of Metallic Materials with Submicrocrystal Structure," Fiz. Metal. Metalloved. 73 (4), 70-86 (1992) [Phys. Met. Metallography (Engl. Transl.) 73 (4), 373-383 (1992)].
13.  R. Z. Valiev and I. V. Alexandrov, Bulk Nanostructured Metallic Materials: Production, Structure, and Properties (IKTs Akadem. Kniga, Moscow, 2007) [in Russian].
14.  M. J. Zehetbauer and Y. T. Zhu (Editors), Bulk Nanostructured Materials (Wiley-VCH Verlag, Weinheim, 2009).
15.  R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, "Bulk Nanostructured Materials from Severe Plastic Deformations," Prog. Mater. Sci. 45 (2), 103-189 (2000).
16.  R. Z. Valiev and I. V. Alexandrov, Nanostructured Materials Produced by Intensive Plastic Defornmation (Logos, Moscow, 2000) [in Russian].
17.  Ultrafine Grained Materials II, Ed. by Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (TMS (The Minerals, Metal, and Materials Society), Warrendale, Pennsilvania, 2002).
18.  M. Zehetbauer (Editor), Adv. Engng Mater., 5 (Special Issue on Nanomaterials by Severe Plastic Deformation (SPD)) (2003).
19.  A. P. Zhilyaev and T. G. Langdon, "Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications," Prog. Mater. Sci. 53, 893-979 (2008).
20.  R. Z. Valiev, "Production of Nanostructured Metals and Alloys with Unique Properties Using Intensive Plastic Deformations," Ross. Nanotekhnol. 1 (1-2), 208-216 (2006) [Nanotechnol. Russ. (Engl. Transl.)].
21.  T. G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita, "Using Equal-Channel Angular Pressing for Refining Grain Size," JOM 52 (4), 30-33 (2000).
22.  G. I. Raab, "Development of Intensive Plastic Deformation Methods for Producing Ultrafine Grained Materials," Vestnik UGATU, No. 3(11), 67-75 (2004).
23.  I. P. Semenova, V. V. Latysh, G. Kh. Sadikova, and R. Z. Valiev, "Structure and Mechanical Properties of Titanium Elongated Workpieces Produced from Intensive Plastic Deformations," Fiz. Tekhn. Vys. Davl. 15 (1), 81-85 (2005).
24.  F. Z. Utyashev and G. I. Raab, "Influence of the Scale Factor on Grain Refinement in Metals under Intensive Plastic Deformations," Kuznechno-Shtampovochnoe Proizvodstvo, No. 11, 13-20 (2008).
25.  V. S. Zhernakov, I. N. Budilov, G. I. Raab, et al., "A Numerical Modeling and Investigations of Flow Stress and Grain Refinement during Equal-Channel Angular Pressing," Scripta Mater. 44 (8-9), 1765-1769 (2001).
26.  F. Z. Utyashev and G. I. Raab, "The Area of the Surfaces of Fragments, Grains, and the Sample upon Large Cold Deformations of Metals and the Effect of These Surfaces and the Surface of the Deformation Zone on Structure Refinement," Fiz. Metal. Metalloved. 101 (3), 311-322 (2006) [Phys. Met. Metallography (Engl. Transl.) 101 (3), 285-295 (2006)].
27.  V. V. Stolyarov, Y. T. Zhy, I. V. Alexandrov, et al., "Influence of ECAP Routes on the Microstructure and Properties of Pure Ti," Mater. Sci. Engng. A 299 (1-2), 59-67 (2001).
28.  G. Kh. Sadikova, V. V. Latysh, I. P. Semenova, and R. Z. Valiev "Effect of Severe Plastic Deformation and Thermomechanical Treatment on the Structure and Properties of Titanium," Metaloved. Term. Obrab. Metallov, No. 11(605), 31-34 (2005) [Metal Sci. Heat Treatment (Engl. Transl.) 47 (11-12), 512-515 (2005)].
29.  G. I. Raab, "Plastic Flow at Equal Channel Angular Processing in Parallel Channels," Mater. Sci. Engng. A 410-411, 230-233 (2005).
30.  G. I. Raab, G. V. Kulyasov, V. A. Polozovskii, and R. Z. Valiev, "Device for Metal Deformation Processing," RF Patent No. 2 188 091 (June 09, 2000; Published on April 20, 2002), Bulletin No. 36.
31.  N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, "Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing," Scripta Mater. 47 (12), 893-899 (2002).
32.  A. P. Zhilyaev, B.-K. Kim, G. V. Nurislamova, et al., "Orientation Imaging Microscopy of Ultrafine-Grained Nickel," Scripta Mater. 46 (8), 575-580 (2002).
33.  I. V. Alexandrov, A. R. Kil'mametov, and R. Z. Valiev, "X-Ray Diffraction Studies of Ultrafine-Grained Metals Produced by Equal-Channel Angular Pressing," Metally, No. 1, 63-71 (2004) [Russ. Metallurgy (Metally) (Engl. Transl.) No. 1, 52-59 (2004)].
34.  R. Z. Valiev, A. V. Sergueva, and A. K. Mukherjee, "The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium," Scripta Mater. 49 (7), 669-674 (2003).
35.  G. V. Nurislamova, X. Sauvage, R. Isiamgaliev, and R. Z. Valiev, "Nanostructure and Related Mechanical Properties of an Al-Mg-Si Alloy Processing by Severe Plastic Deformation," Phil. Mag. Lett. 88 (6), 459-466 (2008).
36.  G. Sha, Y. B. Wang, X. Z. Liao, et al., "Influence of Equal-Channel Angular Pressing on Precipitation in an Al-Zn-Mg-Cu Alloy," Acta Mater. 57 (10), 3123-3132 (2009).
37.  P. V. Liddicoat, X. Z. Liao, Y. Zhao, et al., "Nanostructural Hierarchy Increases the Strength of Aluminium Alloys," Nature Communicat. 1 (6), 63-69 (2010).
38.  R. Z. Valiev, N. A. Enikeev, M. Yu. Murashkin, et al., "Superstrength of Ultrafine-Grained Aluminum Alloys Produced by Severe Plastic Deformation," Dokl. Ross. Akad. Nauk 432 (6), 757-760 (2010) [Dokl. Phys. (Engl. Transl.) 55 (6), 267-270 (2010)].
39.  R. Z. Valiev, M. Yu. Murashkin, E. V. Bobruk, and G. I. Raab, "Grain Refinement and Mechanical Behavior of the Al Alloy Subjected to the new SPD Technique," Mater. Trans. 50 (1), 87-91 (2009).
40.  C. S. Pande and K. P. Cooper, "Nanomechanics of Hall-Petch Relationship in Nanocrystalline Materials," Prog. Mat. Sci. 54 (6), 689-706 (2009).
41.  M. Yu. Gutkin, I. A. Ovid'ko, and C. S. Pande, "Yield Stress of Nanocrystalline Materials: Role of Grain Boundary Dislocations, Triple Junctions, and Coble Creep," Philos. Mag. 84 (9), 847-863 (2004).
42.  E. O. Hall, "The Deformation and Ageing of Mild Steel: III Discussion of Results," Proc. Phys. Soc. London. B 64 (9), 747-753 (2009).
43.  N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel Inst. 174 (1), 25-28 (1953).
44.  N. Krasilnikov, Z. Pakiela, W. Lojkowski, and R. Z. Valiev, "Excellent Mechanical Properties of Nickel Processed by High Pressure Technique," Solid State Phenomena 101-102, 49-54 (2005).
45.  J. Lian, C. Gu, Q. Jiang, and Z. Jiang, "Strain Rate Sensitivity of Face-Centered-Cubic Nanocrystalline Materials Based on Dislocation Deformation," J. Appl. Phys., No. 99, p. 076103 (2006).
46.  R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, "Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation," J. Mater. Res. 17 (1), 5-8 (2002).
47.  R. Z. Valiev and I. B. Alexandrov, "A Paradox of Severe Plastic Deformation in Metals," Dokl. Ross. Akad. Nauk 380 (1), 34-37 (2001) [Dokl. Phys. (Engl. Transl.) 46 (9), 633-635 (2001)].
48.  E. W. Hart, "Theory of the Tensile Test," Acta Metall. 15 (2), 351-355 (1967).
49.  G. E. Deiter, Mechanical Metallurgy (McGraw-Hill, New York, 1986).
50.  Z. Budkovic, H. Van Swygenhoven, P. M. Deriet, et al., "Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel," Science 304 (5668), 273-276 (2004).
51.  H. W. Höppel, M. Kautz, C. Xu, et al., "An Overview: Fatigue Behavior of Ultrafine-Grained Metals and Alloys," Int. J. Fatigue 28 (9), 1001-1010 (2006).
52.  R. Z. Valiev, M. Zehetbauer, Yu. Estrin, et al., "The Innovation Potential of Bulk Nanostrutured Materials," Adv. Engng Mater. 9 (7), 527-533 (2007).
Received 18 February 2010
Link to Fulltext
<< Previous article | Volume 47, Issue 4 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100