Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-6pp.952-959

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
A.V. Kravtsov, S.V. Kuznetsov, and S.Ya. Sekerzh-Zen'kovich, "Finite Element Models in Lamb's Problem," Mech. Solids. 46 (6), 952-959 (2011)
Year 2011 Volume 46 Number 6 Pages 952-959
DOI 10.3103/S002565441106015X
Title Finite Element Models in Lamb's Problem
Author(s) A.V. Kravtsov (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, avkravtsow@rambler.ru)
S.V. Kuznetsov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, kuzn-sergey@yandex.ru)
S.Ya. Sekerzh-Zen'kovich (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, seker@ipmnet.ru)
Abstract We consider a complex of issues on finite element modeling of the propagation of bulk and surface waves caused by harmonic concentrated actions applied to the boundary of an elastic half-space or elastic half-plane (Lamb's external problem).
Keywords finite element, bulk wave, surface wave, Lamb's problem
References
1.  J. Boussinesq, Applications des Potentials (Gauthier-Villars, Paris, 1885).
2.  J. R. Barber, Elasticity (Kluwer, New York, 2002),
3.  C. Flamant, Stabilite des Constructions, Resistence des Materiaux (Gauthier-Villars, Paris, 1896).
4.  H. Lamb, "On the Propagation of Tremors over the Surface of an Elastic Solid," Phi. Trans. Roy. Soc. London. Ser. A 203 (359), 1-44 (1904).
5.  V. I. Smirnov and S. L. Sobolev, "On a New Method in the Plane Problem on Elastic Vibrations," Trudy Seismolog. Inst. AN USSR, No. 20 (1932) [Tr. Seism. Inst. (French Transl.), No. 20 (1932); in G. V. Demidenko and V. L. Vaskevich (Editors), Selected Works of S. L. Sobolev, Volume I: Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas (Springer, New York, 2006), pp. 45-80 (Engl. Transl.)]
6.  V. I. Smirnov and S. L. Sobolev, "On Application of a New Method to Study Elastic Vibrations in a Space with Axial Symmetry," Trudy Seismolog. Inst. AN USSR, No. 29 (1933) [Tr. Seism. Inst. (French Transl.), No. 29 (1933); in G. V. Demidenko and V. L. Vaskevich (Editors), Selected Works of S. L. Sobolev, Volume I: Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas (Springer, New York, 2006), pp. 81-130 (Engl. Transl.)]
7.  L. Cagniard, Reflexion et Refraction des Ondes Seismiques Progressives (Gauthier-Villars, Paris, 1939).
8.  A. T. de Hoop, "A Modification of Cagniard's Method for Solving Seismic Pulse Problems," Appl. Sci. Res. Sect. Ser. B 8 (4), 349-356 (1960).
9.  E. R. Lapwood, The Earth Today (Oliver and Boyd, Edinburgh, 1961).
10.  J. Mikkowitz, The Theory of Elastic Waves and Waveguides (North-Holland, Amsterdam, 1978).
11.  G. I. Petrashen', "On Lamb's Problem for an Elastic Half-Space," Dokl. Akad. Nauk SSSR 64 (5), 649-652 (1949).
12.  G. I. Petrashen', G. I. Marchuk, and K. I. Ogurtsov, "On Lamb's Problem for a Half-Space," Uch. Zap. Len. Gos. Univ., Ser. Mat., 21 (135), 71-118 (1950).
13.  P. G. Richards, "Elementary Solutions to Lamb's Problem for a Point Source and Their Relevance to Three-Dimensional Studies of Spontaneous Crack Propagation," Bull. Seism. Soc. Amer. 69 (4), 947-956 (1979).
14.  V. B. Poruchikov, Methods of Dynamic Elasticity (Nauka, Moscow, 1986) [in Russian].
15.  D. V. Peregudov, "Two-Dimensional Lamb Problem. Cagniard Method," Vychicl. Seism., No. 31, 120-137 (2000).
16.  E. I. Shemyakin and V. L. Fainshmidt, "Wave Propagation in an Elastic Half-Space Excited by a Surface Tangential Wave," Uch. Zap. Len. Gos. Univ., Ser. Mat., 28 (177), 148-179 (1954).
17.  V. S. Nikiforovskii, "Study of the Dynamical Stress Field in an Elastic Half-Space near the Point of Application of the Surface Load," Zh. Prikl. Mekh. Tekhn. Fiz. 3 (2), 85-94 (1962) [J. Appl. Mech. Tech. Phys. (Engl. Transl.)].
18.  V. S. Nikiforovskii and E. I. Shemyakin, Dynamical Fracture of Solids (Nauka, Novosibirsk, 1979) [in Russian].
19.  V. N. Kukudzhanov, Numerical Solution of Non-One-Dimensional Problems of Propagation of Stress Waves in Solids, in Report on Applied Mathematics (VTs AN SSST, Moscow, 1976) [in Russian].
20.  E. N. Vedenyapin and V. N. Kukudzhanov, "A Method for the Numerical Integration of Nonstationary Problems of the Dynamics of an Elastic Medium," Zh. Vych. Mat. Mat. Fiz. 21 (5), 1233-1248 (1981) [USSR Comput. Math. and Math. Phys. 21 (5), 160-174 (1981)].
21.  D. Komatitsch and J. Tromp, "Spectral-Element Simulations of Global Seismic Wave Propagation. I. Validation," Geophys. J. Int. 149 (2), 390-412 (2002).
22.  D. Komatitsch and J. Tromp, "Spectral-Element Simulations of Global Seismic Wave Propagation. II. 3-D Models, Oceans, Rotation, and Self-Gravitation," Geophys. J. Int. 150 (1), 303-318 (2000).
23.  P. Moczo, J. Kristek, V. Vavrycuk, et al., "3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities," Bull. Seism. Soc. Am. 92 (8), 3042-3066 (2002).
24.  W. M. Ewing, W. S. Jardetzki, and E. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).
25.  P. C. Vinh and R. W. Ogden, "On Formulas for the Rayleigh Wave Speed," Wave Motion 39, 191-197 (2004).
26.  A. S. Grishin, "Rayleigh Waves in Isotropic Media: Analytical Solutions and Approximations," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 48-52 (2001) [Mech. Solids (Engl. Transl.) 36 (1), 38-41 (2001)].
27.  R. Clayton and B. Engquist, "Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations," Bull. Seism. Soc. Am. 67 (6), 1529-1540 (1977).
28.  B. Engquist and A. Majda, "Absorbing Boundary Conditions for the Numerical Simulation of Waves," J. Mater. Comput. 31 (139), 629-651 (1977).
29.  B. Engquist and A. Majda, "Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations," J. Commun. Pure Appl. Math. 32 (3), 313-357 (1979).
30.  D. Givoli, Numerical Methods for Problems in Infinite Domains (Elsevier, Amsterdam, 1992).
31.  T. Belytschko, J. I. Lin, and C. S. Tsay, "Explicit Algorithms for the Nonlinear Dynamics," Computer Methods Appl. Mech. Engng 42 (2), 225-251 (1984).
32.  O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method. Vol. 1: The Basis (Butterworth, Oxford, 2000).
33.  V. N. Kukudzhanov, Computational Continuum Mechanics (Fizmatlit, Moscow, 2008) [in Russian].
34.  A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].
35.  T. J. R. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, New York, 1987).
Received 15 June 2011
Link to Fulltext
<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100