Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-6pp.946-951

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
S.V. Nesterov, "Flexural Vibration of a Square Plate Clamped along Its Contour," Mech. Solids. 46 (6), 946-951 (2011)
Year 2011 Volume 46 Number 6 Pages 946-951
DOI 10.3103/S0025654411060148
Title Flexural Vibration of a Square Plate Clamped along Its Contour
Author(s) S.V. Nesterov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, kumak@ipmnet.ru)
Abstract Analytical expressions are constructed for calculating the natural frequencies and mode shapes of flexural vibrations of a square homogeneous plate clamped along its contour. An error estimate is given by comparing predicted results with those of known high-precision calculations. Also the results of analytical calculations are compared with experimental data obtained by the author using the resonance method. The analytical and corresponding numerical results coincide with the experimental data to within less than 1%.

High-precision evaluation of natural frequencies is required to design modern precision electromechanical transformers and to analyze the quality of their operation. The proposed investigation techniques and computational algorithm can be used to study flexural vibration of plates with other types of boundary conditions.
Keywords square plate, natural frequencies, mode shapes, modified Rayleigh method, experiment
References
1.  S. H. Gould, Variational Methods for Eigenvalue Problems (Oxford Univ. Press, London, 1970; Mir, Moscow, 1970).
2.  S. G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon, New York, 1964; Nauka, Moscow, 1970).
3.  G. Fichera, Linear Elliptic Differential Systems and Eigenvalue Problems (Springer, Berlin, 1965).
4.  G. Fichera, "Approximations and Estimates for Eigenvalues," Vortrag der 3en Tagung über Problemen und Methoden der Matheamtischem Physik Technische Hochschule Karl-Marx-Stadt H.I. (1966), pp. 60-98.
5.  I. A. Birger and Ya. G. Panovko (Editors), Strength. Stability. Vibrations, Vol. 3 (Mashinostroenie, Moscow, 1968) [in Russian].
6.  L. D. Akulenko and S. V. Nesterov, "Vibration of a Nonhomogeneous Membrane," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 134-145 (1999) [Mech. Solids (Engl. Transl.) 34 (6), 112-121 (1999)].
7.  L. D. Akulenko and S. V. Nesterov, "Experimental Identification of Poisson's Ratio by the Resonance Method," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 49-57 (2000) [Mech. Solids (Engl. Transl.) 35 (6), 38-45 (2000)].
Received 17 February 2010
Link to Fulltext
<< Previous article | Volume 46, Issue 6 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100