Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-2pp.238-246

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 2 / 2010 | Next article >>
K.B. Ustinov, "Computation of the Energy of an Inhomogeneity: Asymptotics and Their Scope," Mech. Solids. 45 (2), 238-246 (2010)
Year 2010 Volume 45 Number 2 Pages 238-246
DOI 10.3103/S0025654410020093
Title Computation of the Energy of an Inhomogeneity: Asymptotics and Their Scope
Author(s) K.B. Ustinov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, ustinov@ipmnet.ru)
Abstract By passing to the limit in the general solution, we obtain several exact asymptotic formulas for the energy of an inhomogeneity in a body located in an external stress field. The parameters determining the type of the asymptotic behavior are the inclusion semiaxis ratio and the inclusion-matrix elastic modulus ratio. In the case of a large simultaneous deviation of the parameters from unity, we distinguish seven regions corresponding to various successive passages to the limit as these parameters approach zero (or infinity).
Keywords elasticity, inhomogeneity, Eshelby tensor, small parameter
References
1.  J. D. Eshelby, "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proc. Roy. Soc. London. Ser. A 241 (1226), 376-396 (1957).
2.  J. D. Eshelby, "Elastic Inclusions and Inhomogeneities," in Progress in Solid Mechanics, Vol. 2, Ed. by I. N. Sneddon and R. Hill (North-Holland, Amsterdam, 1961), pp. 89-140.
3.  T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publ., Hague, 1982).
4.  J. R. Bristow, "Microcracks and the Static and Dynamics Elastic Constants of Annealed and Heavily Coldworked Metals," British J. Appl. Phys. 11, 81-85 (1960).
5.  R. L. Salganik, "Mechanics of Bodies with Many Cracks," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 149-158 (1973) [Mech. Solids (Engl. Transl.) 8 (4) 135-143 (1973)].
6.  T. T. Wu, "The Effort of Inclusion Shape on the Elastic Moduli of a Two-Phase Material," Int. J. Solids Struct. 2, 1-8 (1966).
7.  Yu. F. Kovalenko and R. L. Salganik, "Fractured Inhomogeneities and Their Influence on Effective Mechanical Characteristics," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 5, 76-86 (1977) [Mech. Solids (Engl. Transl.)].
8.  R. L. Salganik, "Transport Processes in Bodies with a Large Number of Cracks," Inzh. Fiz. Zh. 27 (6), 1069-1075 (1974) [J. Engng Phys. Thermophys. (Engl. Transl.) 27 (6), 1534-1538 (1974)].
9.  W. B. Russel and A. Acrwos, "On the Effective Moduli of Composite Materials: Slender Rigid Inclusions at Dilute Concentrations," ZAMP 23 (3), 434-463 (1972).
10.  W. B. Russel, "On the Effective Moduli of Composite Materials: Effect of Fiber Length and Geometry at Dilute Concentrations," ZAMP 24 (4), 581-600 (1973).
11.  I. Sevostianov and M. Kachanov, "Compliance Tensors of Ellipsoidal Inclusions," Int. J. Fract. 96 (1), L3-L7 (1999).
12.  K. B. Ustinov and R. V. Goldstein, "On Application of Classical Eshelby Approach to Calculating Effective Elastic Moduli of Dispersed Composites," Int. J. Fract. 147 (1-4), 55-66 (2007).
13.  L. J. Walpole, "On the Overall Elastic Moduli of Composite Materials," J. Mech. Phys. Solids 17 (4), 235-251 (1969).
14.  S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body (Nauka, Moscow, 1977; Mir Publishers, Moscow, 1981).
Received 28 October 2008
Link to Fulltext
<< Previous article | Volume 45, Issue 2 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100