Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.406-416

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
A.A. Movchan, I.A. Movchan, and L.G. Sil'chenko, "Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys under Phase and Structure Transitions," Mech. Solids. 45 (3), 406-416 (2010)
Year 2010 Volume 45 Number 3 Pages 406-416
DOI 10.3103/S0025654410030118
Title Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys under Phase and Structure Transitions
Author(s) A.A. Movchan (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 117334 Russia, movchan47@mail.ru)
I.A. Movchan (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 117334 Russia)
L.G. Sil'chenko (Institute of Applied Mechanics, Russian Academy of Sciences, GSP-1, V-334, Leninskii pr-t 32A, Moscow, 117334 Russia)
Abstract We propose a model of nonlinear deformation of shape memory alloys (SMA) under phase and structure transitions which reflects the basic characteristics of the phenomena that occur in these materials at the microlevel. The model takes account of the influence on the processes in SMA not only of the applied external macroscopic stresses but also of the microstresses randomly distributed in the material volume under study, with the characteristics of these distributions (mathematical expectation and root mean square deviation) treated as material constants. We also demonstrate that the results predicted by the model agree well with the experimental data for nickel titanium alloy samples.
Keywords shape memory alloys, elementary volume, martensite mesoelement, phase and structure transitions
References
1.  V. A. Likhachev and V. G. Malinin, Structure-Analytical Theory of Strength (Nauka, St. Petersburg, 1993) [in Russian].
2.  A. A. Il'in, Mechanism and Kinetics of Phase Transitions in Titanium Alloys (Nauka, Moscow, 1994) [in Russian].
3.  R. J. Comstock, Jr., T. F. Buchheit, M. Somerday, and J. A. Wert, "Modelling the Transformation Stress of Constrained Shape Memory Alloy Single Crystals," Acta Mater. 44 (9), 3505-3514 (1996).
4.  A. A. Klopotov, E. S. Marchenko, A. N. Matunin, and E. V. Kozlov, "Bain Strain upon Thermoelastic Martensitic Transformation in Intermetallic Compounds Based on Titanium Nickelide," Izv. Akad. Nauk. Ser. Fiz. 72 (8), 1098-1101 (2008) [Bull. Russ. Acad. Sci. Phys. (Engl. Transl.) 72 (8), 1033-1036 (2008)].
5.  T. Waitz, V. Kazykhanov, and H. P. Karnthaler, "Martensitic Phase Transformations in Nanocrystalline NiTi Studied by TEM," Acta Mater. 52, 137-147 (2004).
6.  A. A. Movchan, S. A. Kazarina, Tant Zin Aung, "Analog of Theory of Plasticity for Describing Deformations of Shape Memory Alloys under Phase and Structure Transformations," Deformats. Razrush. Mat., No. 9, 2-7 (2009).
7.  A. A. Movchan, "Micromechanical Constitutive Equations for Shape Memory Allows," Probl. Mashinostr. Nadezhn. Mashin, No. 6, 47-53 (1994).
8.  A. A. Movchan, "Micromechanical Description of the Deformation due to Martensite Transformations in Shape-Memory Alloys," Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 197-205 (1995) [Mech. Solids (Engl. Transl.) 30 (1), 186-192 (1995)].
9.  A. A. Movchan, "Selecting a Phase-Diagram Approximation and a Model of the Disappearance of Martensite Crystals for Shape Memory Alloys," Zh. Prikl. Mekh. Tekh. Fiz. 36 (2), 173-181 (1995) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 36 (2), 300-307 (1995)].
10.  A. A. Movchan, "Analytical Solution of Problems on the Direct and Inverse Transformations in Shape Memory Alloys," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 136-144 (1996) [Mech. Solids (Engl. Transl.) 31 (4), 116-123 (1996)].
11.  A. A. Movchan, "Some Manifestations of Oriented Transform Ability of Shape-Memory Alloys," Zh. Prikl. Mekh. Tekh. Fiz. 37 (6), 181-189 (1996) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 37 (6), 926-933 (1996)].
12.  A. A. Movchan, "Consideration of the Elastic Modulus Variability and the Effect of Stresses on the Phase Composition in Shape Memory Alloys," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 79-90 (1998) [Mech. Solids (Engl. Transl.) 33 (1), 64-72 (1998)].
13.  A. A. Movchan, "Coupling Effects in Bending Problems for Beams of a Shape Memory Alloy," Zh. Prikl. Mekh. Tekh. Fiz. 39 (1), 164-173 (1998) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 39 (1), 143-151 (1998)].
14.  A. A. Movchan, "Torsion of Shape Memory Alloy Prismatic Rods," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 143-154 (2000) [Mech. Solids (Engl. Transl.) 35 (6), 119-128 (2000)].
15.  A. A. Movchan and L. G. Sil'chenko, "Buckling of a Rod Undergoing Direct or Reverse Martensite Transformation under Compressive Stresses," Zh. Prikl. Mekh. Tekh. Fiz. 44 (3), 169-178 (2003) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 44 (3), 442-449 (2003)].
16.  A. A. Movchan and L. G. Sil'chenko, "The Stability of a Plate of Shape-Memory Alloy in a Direct Thermoelastic Phase Transition," Prikl. Mat. Mekh. 68 (1), 60-72 (2004) [J. Appl. Math. Mech. (Engl. Transl.) 68 (1), 53-64 (2004)].
17.  A. A. Movchan and L. G. Sil'chenko, "Analysis of Buckling Induced by the Direct Thermoelastic Transformation under the Action of Compression Stresses," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 132-144 (2004) [Mech. Solids (Engl. Transl.) 39 (2), 104-114 (2004)].
18.  A. A. Movchan and L. G. Sil'chenko, "Analytical Solution of the Coupled Buckling Problem for a Plate from a Shape Memory Alloy Subjected to Inverse Martensite Transformation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 164-178 (2004) [Mech. Solids (Engl. Transl.) 39 (5), 134-145 (2004)].
19.  A. A. Movchan and L. G. Sil'chenko, "The Stability of a Circular Plate of Shape Memory Alloy during a Direct Martensite Transformation," Prikl. Mat. Mekh. 70 (5), 871-883 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (5), 785-795 (2006)].
20.  A. A. Movchan and L. G. Sil'chenko, "Buckling of a Circular Plate Made of a Shape Memory Alloy due to a Reverse Thermoelastic Martensite Transformation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 117-130 (2008) [Mech. Solids (Engl. Transl.) 43 (1), 100-111 (2008)].
21.  I. G. Petrovskii, Lectures in Theory of Ordinary Differential Equations (Gostekhizdat, Moscow-Leningrad, 1952) [in Russian].
22.  S. D. Prokoshin, L. M. Kaputkina, T. V. Morozova, and I. Yu. Khmelevskaya, "Dilatometric Anomalies and Shape Memory Effect in Titanium Nickelide Alloy after Low-Temperature Thermo-Mechanical Treatment," Fiz. Metal. Metalloved. 80 (3), 70-77 (1995) [Phys. Met. Metallography (Engl. Transl.)].
23.  Yu. I. Kadashevich and V. V. Novozhilov, "The Theory of Plasticity which Takes into Account Residual Microstresses," Prikl. Mat. Mekh. 22 (1), 78-89 (1958) [J. Appl. Math. Mech. (Engl. Transl.) 22 (1), 104-118 (1958)].
Received 11 January 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100