Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.417-426

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
E.I. Shifrin, "Ellipsoidal Defect Identification in an Elastic Body from the Results of a Uniaxial Tension (Compression) Test," Mech. Solids. 45 (3), 417-426 (2010)
Year 2010 Volume 45 Number 3 Pages 417-426
DOI 10.3103/S002565441003012X
Title Ellipsoidal Defect Identification in an Elastic Body from the Results of a Uniaxial Tension (Compression) Test
Author(s) E.I. Shifrin (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, shifrin@ipmnet.ru)
Abstract We consider the problem of identification of an ellipsoidal cavity or ellipsoidal inclusion (rigid or elastic) in an isotropic linearly elastic body. We solve the problem by a method based on the use of a reciprocity functional. We propose a constructive procedure which allows us to express the defect geometric parameters in terms of the values of the reciprocity functional. These values can be calculated by measuring the displacements on the external surface of the body in a static uniaxial tension (compression) test. The proposed procedure permits exact identification of the parameters of the ellipsoidal defect if it is located in an infinite space. In the case of a bounded elastic body, it can be considered as an approximate procedure.
Keywords linear elasticity, inverse problem, reciprocity principle, ellipsoidal defect identification
References
1.  S. Andrieux, A. Ben Abda, and H. Bui, "Reciprocity Principle and Crack Identification," Inverse Probl. 15, 59-65 (1999).
2.  J. K. Knowles and E. Sternberg, "On a Class of Conservation Laws in Linearized and Finite Elastostatics," Arch. Ration. Mech. Anal. 44 (3), 187-211 (1972).
3.  F. H. K. Chen and R. T. Shield, "Conservation Laws in Elasticity of the J-Integral Type," ZAMP 28, 1-22 (1977).
4.  R. V. Goldstein, E. I. Shifrin, and P. S. Shupannikov, "Application of Invariant Integrals to the Problems of Defect Identification," Int. J. Fract. 147 (1-4), 45-54 (2007).
5.  R. V. Goldstein, E. I. Shifrin, and P. S. Shupannikov, "Application of Invariant Integrals to Elastostatic Inverse Problems," C. r. Acad. Sci. Ser. Mecanique 336, 108-117 (2008).
6.  E. I. Shifrin, "The Relation between Invariant Integrals of the Linear Isotropic Theory of Elasticity and Integrals Defined by the Duality Principle," Prikl. Mat. Mekh. 73 (2), 325-334 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (2), 237-243 (2009)].
7.  E. I. Shifrin, "Symmetry Properties of the Reciprocity Gap Functional in the Linear Elasticity," Int. J. Fract. 159, 209-218 (2009).
8.  E. I. Shifrin and P. S. Shushpannikov, "Identification of a Spheroidal Defect in an Elastic Solid Using Reciprocity Gap Functional," Inverse Probl. 26, 055001 (2010).
9.  J. D. Eshelby, "The Determination of the Elastic Field on an Ellipsoidal Inclusion and Related Problems," Proc. Roy. Soc. London. Ser. A 241 (1226), 376-396 (1957).
Received 21 December 2009
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100