Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2003-3pp.12-21

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
S. E. Perelyaev, "3D parametrization of the rigid body rotation group in systems of gyroscopic orientation," Mech. Solids. 38 (3), 12-21 (2003)
Year 2003 Volume 38 Number 3 Pages 12-21
Title 3D parametrization of the rigid body rotation group in systems of gyroscopic orientation
Author(s) S. E. Perelyaev (Moscow)
Abstract Basic methods of the introduction of a local (3D) parametrization of the configuration space of a rigid body with a fixed point (SO(3)) are described and specific features of these methods are characterized. These methods of 3D parametrization can be utilized for solving a number of applied problems of dynamics of a rigid body. Apart from the well-known methods of local parametrization involving three angles (Eulerian or Euler-Krylov angles), we consider also the exponential parametrization. Advantages of Cayley's linear-fractional parametrization as applied to the solution of the problem of local parametrization of the group SO(3) are discussed and analyzed. It is shown that Cayley's 3D parametrization leads to a Riccati-type kinematic equation, which has a nondegenerate structure. We consider examples of local coordinates based on Rodrigues and Gibbs vectors and the kinematic equations represented in terms of these 3D variables.
References
1.  V. Ph. Zhuravlev, Fundamentals of Theoretical Mechanics [in Russian], Nauka, Moscow, 1997.
2.  J. Stuelpnagel, "On the parametrization of the three-dimensional rotation group," SIAM Review, Vol. 6, No. 4, pp. 422-429, 1964.
3.  S. N. Kirpichnikov and V. S. Novoselov, Mathematical Aspects of Rigid Body Kinematics: A Textbook [in Russian], Izd-vo LGU, Leningrad, 1986.
4.  G. Goldstein, Classical Mechanics [Russian translation], Gostekhizdat, Moscow, 1957.
5.  E. T. Whittaker, Analytical Dynamics [Russian translation], ONTI, Moscow, Leningrad, 1937.
6.  J. L. Synge, Classical Dynamics [Russian translation], Fizmatgiz, Moscow, 1963.
7.  A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation [in Russian], Nauka, Moscow, 1976.
8.  A. I. Lur'e, Analytical Mechanics [in Russian], Fizmatlit, Moscow, 1961.
9.  V. I. Smirnov, A Course in Higher Mathematics. Volume 3. Part 1 [in Russian], Fizmatlit, Moscow, 1958.
10.  S. M. Onishchenko, Application of Hyper-complex Numbers in the Theory of Inertial Navigation [in Russian], Naukova Dumka, Kiev, 1983.
11.  A. H. Lipton, Alignment of Inertial Systems on a Moving Base [Russian translation], Nauka, Moscow, 1971.
12.  B. N. Branets and I. P. Shmyglevskii, Introduction to the Theory of Strapdown Inertial Navigation Systems [in Russian], Nauka, Moscow, 1992.
13.  S. A. Gorbatenko, E. M. Makashov, Yu. F. Polushkin, and L. V. Sheftel', Flight Mechanics (General Information. Equations of Motion): A Handbook for Engineers [in Russian], Mashinostroenie, Moscow, 1969.
14.  H. J. Marcelo and D. T. Vassilios, "Singularities of Euler and roll-pitch-yaw representations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 1, pp. 59-69, 1987.
15.  A. P. Panov, Mathematical Foundation of Inertial Orientation [in Russian], Naukova Dumka, Kiev, 1995.
16.  J. E. Bortz, "A new mathematical formulation for strapdown inertial navigation," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-7, No. 1, pp. 61-66, 1971.
17.  F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow, 1967.
18.  Litton Space Operations. Technology and Product Overview. May, 1996.
19.  R. Penrose and W. Rindler, Spinors and Space-time [Russian translation], Mir, Moscow, 1987.
20.  S. E. Perelyaev, "A new combined algorithm for determining the orientation of a rigid body," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 3-19, 2000.
21.  P. G. Savage, "Strapdown system algorithms," in ACARD. Advances in Strapdown Inertial Systems, pp. 3.1-3.28, 1984.
22.  G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers [Russian translation], Nauka, Moscow, 1977.
23.  R. Troilo, "Some theorems on precession motion and regular precession," in Mechanics. A Periodical Issue of Translated Papers, No. 5 [Russian translation from Italian], Mir, Moscow, 1973.
Received 20 March 2001
<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100