Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2003-3pp.22-26

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
A. P. Markeev, "On the identity resonance in a particular case of the problem of stability of periodic motions of a rigid body," Mech. Solids. 38 (3), 22-26 (2003)
Year 2003 Volume 38 Number 3 Pages 22-26
Title On the identity resonance in a particular case of the problem of stability of periodic motions of a rigid body
Author(s) A. P. Markeev (Moscow)
Abstract The motion of a rigid body with one fixed point is considered. The mass geometry and the initial conditions of motion of the body are assumed to correspond to Goryachev-Chaplygin integrable case [1, 2]. In this case, there exist families of periodic motions corresponding to vibrations or rotations of the body about a principal axis of inertia that occupies an invariable horizontal position. In the present paper, we assume that this axis is the equatorial axis of the ellipsoid of inertia and study the orbital stability of the aforementioned periodic motions. It is established that the problem in question is always a resonant problem. More precisely, it is established that for any vibration amplitude (or any angular velocity of rotation) of the body in the unperturbed motion, a parametric resonance occurs in the perturbed motion (all multipliers are equal to unity). It is shown that the periodic motions under study are orbitally unstable in the first approximation.
References
1.  D. N. Goryachev, "On the motion of a heavy rigid body about a fixed point in the case A=B=4C," Matematicheskii Sbornik Kruzhka Lyubitelei Matematicheskikh Nauk, Vol. 21, No. 3, pp. 431-438, 1900.
2.  S. A. Chaplygin, "New case of rotation of a heavy rigid body supported at one point," Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lyubitelei Estestvoznaniya, Vol. 10, No. 2, pp. 32-34, 1901.
3.  G. V. Gorr, L. V. Kudryashova, and L. A. Stepanova, Classical Problems of Dynamics of a Rigid Body: Development and State-of-the-art [in Russian], Naukova Dumka, Kiev, 1978.
4.  V. V. Kozlov, Qualitative Analysis Methods in Dynamics of a Rigid Body [in Russian], NITs "Regulyarnaya i Khaoticheskaya Dinamika," Izhevsk, 2001.
5.  A. I. Dashkevich, Closed-form Solutions of Euler-Poisson Equations [in Russian], Naukova Dumka, Kiev, 1992.
6.  A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body [in Russian], NITs "Regulyarnaya i Khaoticheskaya Dinamika," Izhevsk, 2001.
7.  A. P. Markeev, Theoretical Mechanics [in Russian], NITs "Regulyarnaya i Khaoticheskaya Dinamika," Izhevsk, 2001.
8.  A. P. Markeev, "On the stability of plane motions of a rigid body in the Kovalevskaya case," PMM [Applied Mathematics and Mechanics], Vol. 65, No. 1, pp. 51-58, 2001.
9.  A. M. Zhuravskii, A Handbook on Elliptic Functions [in Russian], Izd-vo AN SSSR, Moscow, Leningrad, 1941.
10.  I. G. Malkin, Theory of Stability of Motion [in Russian], Nauka, Moscow, 1966.
11.  A. P. Markeev, "Stability analysis of periodic motions of an autonomous Hamiltonian system in one critical case," PMM [Applied Mathematics and Mechanics], Vol. 64, No. 5, pp. 833-847, 2000.
Received 25 November 2002
<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100