Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2024-1pp.541-554

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 59, Issue 1 / 2024 | Next article >>
E.A. Lyamina, "A General Axisymmetric Elastic-Plastic Solution for an Arbitrary Isotropic Yield Criterion under Plane Stress," Mech. Solids. 59 (1), 541-554 (2024)
Year 2024 Volume 59 Number 1 Pages 541-554
DOI 10.1134/S0025654424603100
Title A General Axisymmetric Elastic-Plastic Solution for an Arbitrary Isotropic Yield Criterion under Plane Stress
Author(s) E.A. Lyamina (Ishlinsky Institute for Problems in Mechanics RAS, Moscow, 119526 Russia, lyamina@inbox.ru)
Abstract Plane stress solutions in plasticity have qualitative features not inherent to other deformation modes. Examples are a particular condition of the non-existence of solutions and the necessity to verify that the conditions under which the assumption of plane stress is acceptable are satisfied. Therefore, analytical and semi-analytical solutions are advantageous over numerical solutions, even though the former require simplified constitutive equations. A typical approach for deriving analytical and semi-analytical solutions to axisymmetric problems is to assume Tresca’s yield criterion or another yield criterion represented by linear equations in terms of the principal stresses. Such yield criteria are piecewise linear, and the solution to a boundary value problem usually involves several plastic regimes, making it cumbersome. Moreover, using piecewise linear yield criteria may significantly affect predicted strain distributions compared to smooth yield criteria, which are more accurate for most metals. The present paper provides a general axisymmetric elastic perfectly plastic solution for an arbitrary isotropic yield criterion under plane stress conditions. The flow theory of plasticity based on the associated plastic flow rule is used. Obtaining quantitative results requires evaluating ordinary integrals by a numerical method. The solution is especially simple if one of the boundary conditions requires that the stress components are constant on a surface surrounded by a plastic region. A numerical example of using the solution is presented.
Keywords plane stress, axial symmetry, arbitrary yield criterion, analytical solution, flow theory of plasticity
Received 13 March 2024Revised 27 March 2024Accepted 29 March 2024
Link to Fulltext
<< Previous article | Volume 59, Issue 1 / 2024 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100