Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2023-7pp.2563-2573

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 58, Issue 7 / 2023 | Next article >>
M.Z. Dosaev, "On the Flexibility of a Sliding Vertical Support of a Flat Design," Mech. Solids. 58 (7), 2563-2573 (2023)
Year 2023 Volume 58 Number 7 Pages 2563-2573
DOI 10.3103/S0025654423070075
Title On the Flexibility of a Sliding Vertical Support of a Flat Design
Author(s) M.Z. Dosaev (Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia, dosayev@imec.msu.ru)
Abstract A flat body on hinged supports is considered. One of the supports is connected to the body by means of a sliding attachment. The flexibility of the support rods is modeled by a hinge with a helical spring of sufficient stiffness to prevent relative rotation. It is shown that the linearization of the equilibrium equations makes it impossible to estimate the equilibrium position. The equilibrium position is sought in the form of a series in terms of the reciprocal of the helical spring stiffness coefficient. It is shown that as the helical spring stiffness coefficient tends to infinity and the helical spring moment, which models the internal bending forces in the rods, tends to infinity. For the case of vertical equilibrium, an estimate is given of the tangential reaction in the support hinge, which occurs when additional loads are introduced and in the case of small oscillations. In all the cases considered, the reaction that occurs in the supports is much greater than the body’s weight.
Keywords sliding attachment, elastic spring, equilibrium position, reaction in the support
Received 05 April 2023Revised 15 June 2023Accepted 20 June 2023
Link to Fulltext
<< Previous article | Volume 58, Issue 7 / 2023 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100