Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2022-6pp.1500-1511

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 57, Issue 6 / 2022 | Next article >>
X.J. Niu and X. Zhang, "Curvature-Constrained Layup Optimization to Improve Buckling Resistance of Composite Laminates," Mech. Solids. 57 (6), 1500-1511 (2022)
Year 2022 Volume 57 Number 6 Pages 1500-1511
DOI 10.3103/S0025654422060103
Title Curvature-Constrained Layup Optimization to Improve Buckling Resistance of Composite Laminates
Author(s) X.J. Niu (Tiangong University, Tianjin, 300387 China; Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin, 300387 China, niuxuejuan@tiangong.edu.cn)
X. Zhang (Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin, 300387 China, zx823682201@163.com)
Abstract To improve the buckling resistance, a variable stiffness (VS) layup optimization strategy is proposed by considering the constraints of manufacturing process. By considering the curvature constraints of fiber-tow paths during the fabrication of VS laminates, the constrained Kriging model is bult to relate the design variable of layup configuration with the buckling resistance. The first eigenvalue obtained from the eigenvalue buckling analyzing is set as the objective function, and used to establish the constrained Kriging model. With the help of the multi-island genetic algorithm (MIGA), the global optimal solution is searched, and the influence of VS layups on buckling of composite laminates is analyzed. Taking a uniaxial compressive buckling case for example, an optimized layup configuration has been obtained. By investigating the effectiveness of the optimization strategies, buckling characteristics of four laminates with different layup configurations have been simulated by nonlinear buckling analyzing, and have been proved by the compressive buckling tests. By comparing the buckling responses of the analytical model and the experimental results, it can be found the laminate with optimized layup configuration has a much better buckling resistance ability. Compared with traditional constant stiffness (CS) laminate, the buckling stiffness and ultimate load have been improved by 41.1% and 113.58%, respectively.
Keywords Variable stiffness, Buckling analysis, Constrained Kriging Model, Layup optimization
Received 14 August 2022Revised 17 August 2022Accepted 17 August 2022
Link to Fulltext
<< Previous article | Volume 57, Issue 6 / 2022 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100