Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-6pp.707-720

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
A.I. Glushko and I.I. Neshcheretov, "Construction of Models for Elastic Media with the Restricted Normal Components of the Stress Vector," Mech. Solids. 53 (6), 707-720 (2018)
Year 2018 Volume 53 Number 6 Pages 707-720
DOI 10.3103/S0025654418060122
Title Construction of Models for Elastic Media with the Restricted Normal Components of the Stress Vector
Author(s) A.I. Glushko (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, anatoly.glushko@yandex.ru)
I.I. Neshcheretov (Scientific and Engineering Center for Nuclear and Radiation Safety Malaya Krasnoselskaia ul. 2/8, korp. 5, Moscow, 107140 Russia, nescheretov@secnrs.ru)
Abstract It is shown that the medium exhibiting the property of boundedness for normal stresses is hyperelastic, and the constitutive equation of the medium model is a nonlinear relation between the Piola-Kirchhoff and Green-Saint-Venant tensors.

For an isotropic medium, it is shown that the stress and strain tensors are coaxial, and a representation of the relation between the stress and strain tensors in the form of elementary functions of a tensor argument is obtained. A geometric proof of the uniqueness of the obtained representation is given.
Keywords gradient tensor, Green-Saint-Venant tensor, Cauchy-Green tensor, Piola-Kirchhoff tensor, isotropic function, reaction function
References
1.  Masonry and Reinforced Masonry Structures. SNIP Handbook II-22-81 (Minregion Rossii, Moscow, 2011) [in Russian].
2.  S. Huerta, "Mechanics of Masonry Vaults: The Equilibrium Approach," in Historical Constructions Ed. by P.B. Lourenço, P. Roca (Guimarães, 2001).
3.  H. Hencky, "Zur Theorie Plastischer Deformationen und der Hierdurch im Material Hervorgerufenen Nachspannungen," ZAMM, 4, 323-335 (1924).
4.  G. Del Piero, "Constitutive Equation and Compatibility of the External Loads for Linear Elastic Masonry-Like Materials," Meccan. 24, 150-162 (1989).
5.  H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (Springer, 2010).
6.  P. Lancaster, The Theory of Matrices (Academic Press, 1969; Nauka, Moscow, 1973).
7.  G. Romano and E. Sacco, "Materiali non Resistenti a Trazione. Equazioni Costitutive e Metodi di Calcolo," in Atti Istituto di Scienza Delle Costruzioni, Facolta di Ingegneria di Napoli, No. 350. (Napoli, 1984).
8.  T. Panzeca and C. Polizzotto "Constitutive Equations for No-Tension Materials," Meccan. 23, 88-93 (1988).
9.  M. Lucchesi, C. Padovani, G. Pasquinelli, and N. Zani, "Masonry Constructions: Mechanical Models and Numerical Applications," in Lecture Notes in Applied and Computational Mechanics, Vol. 39 (Springer-Verlag, Berlin-Heidelberg, 2008).
10.  R.W. Cottle, P. Jong-Shi, and R.E. Stone, The Linear Complementarity Problem (Academic Press, Boston, 2009).
11.  Ph.G. Ciarlet, Mathematical Elasticity, Vol. I Three-Dimensional Elasticity (North-Holland et Cetera, 1988; Mir, Moscow, 1992).
12.  R.D. Coleman and W. Noll, "Material Symmetry and Thermostatic Inequality in Finite Elastic Deformations," Arch. Rat. Mech. Analys. 15 (2), 87-111 (1964).
13.  W. Noll, "A Mathematical Theory of Mechanical Behavior of Continuous Media," Arch. Rat. Mech. Anal. 2 (1), 197-226 (1959).
14.  I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North Holland; Amsterdam: Oxford: Elsevier. 1976; Mir, Moscow, 1979).
15.  R.B. Holmes, A Course on Optimization and Best Approximation (Springer-Verlag, Berlin-Heidelberg-New York, 1972).
16.  A.I. Glushko and I.I. Neshcheretov, "Mathematical Models of Damaged Elastic Media that Deform Differently under Tension and Compression," Quart. J. Mech. App. Math. 65 (3), 373-387 (2012).
17.  C. Baiocchi and A. Capelo, Varitional and Quasi-Varitional Inequalities. Applications to Free Boundary Problems (Wiley, 1984; Nauka, Moscow, 1988).
18.  V.V. Lokhin and L.I. Sedov, "Nonlinear Tensor Functions of Several Tensor Arguments," in Continuum Mechanics Ed. by L.I. Sedov (Nauka, Moscow, 1970) [in Russian].
19.  M.E. Gurtin, An Introduction to Continuum Mechanics (Academic Press, New York-London-Toronto-Sydney-San Francisco, 1981).
Received 10 November 2014
Link to Fulltext
<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100