Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-6pp.651-663

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
L.A. Komar and A.L. Svistkov, "Model of Mass Transfer Processes in a Mixture of Continua Consisting of One Deformable and Two Liquid Component," Mech. Solids. 53 (6), 651-663 (2018)
Year 2018 Volume 53 Number 6 Pages 651-663
DOI 10.3103/S0025654418060067
Title Model of Mass Transfer Processes in a Mixture of Continua Consisting of One Deformable and Two Liquid Component
Author(s) L.A. Komar (Institute of Continuous Media Mechanics of the Ural Branch of RAS ul. Akademika Koroleva 1, Perm, 614013 Russia, komar@icmm.ru)
A.L. Svistkov (Institute of Continuous Media Mechanics of the Ural Branch of RAS ul. Akademika Koroleva 1, Perm, 614013 Russia)
Abstract The proposed mathematical model is based on the theory of a mixture of interpenetrating continua: deformable (polymer) and two liquid continuums. The governing equations of the model are obtained as consequences of the laws of thermodynamics and the requirements of their invariance to Galilean transformations. Equations describing the motion of liquid components are formulated in coordinates related to the polymer component of the mixture. The need for such a choice arises as a result of the fact that only a polymer can be deformed. When solving problems, it is required to find polymer deformations and investigate the movement of solvents relative to it, including the release of solvents through the polymer boundary into the external environment. Material considered in this mathematical model is capable of working under conditions of finite deformations. The expression of the free energy of the mixture takes into account the energy of interaction of the molecules of the mixture with each other (polymer and two solvents).
Keywords laws of thermodynamics, mixture theory, polymer, solvent, diffusion, stresses, deformations, chemical potential
References
1.  T. Higuchi, "Mechanism of Sustained Action Medication: Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices," J. Pharm. Sci. 52, 1145-1148 (1963).
2.  S.S. ,Dukhin and M.E. Labib, "Theory of Effective Drug Release from Medical Implants Based on the Higuchi Model and Physico-Chemical Hydrodynamics," Coll. Surf. Phys. Engng. Asp. 409, 10-20, (2012).
3.  S.W. McCue, M. Hsieh, T.J. Moroney, and M.I. Nelson, "Asymptotic and Numerical Results for a Model of Solvent-Dependent Drug Diffusion through Polymeric Spheres," Soc. Ind. App. Math. J. App. Math. 71 (6), 2287-2311 (2011).
4.  M. Hsieh, Mathematical Modelling of Controlled Drug Release from Polymer Micro-Spheres: Incorporating the Effects of Swelling, Diffusion and Dissolution via Moving Boundary Problems. Doctoral Dissertarion in Philosophy (Queenland University of Technology, Brisbane, 2012).
5.  J.G. Wijmans and R.W. Baker, "The Solution–Diffusion Model: a Review," J. Membr. Sci. 107, 1-21 (1995).
6.  A.L. Svistkov, "Mechanical Properties and Mass Transfer of Viscoelastic Deformable Media," Int. J. Engng. Sci. 39, 1509-1532 (2001).
7.  H. Mehrer, Diffusion in Solids (Heidelberg, N. Y.; Springer, Berlin, 2007).
8.  E.Ya. Denisyuk, "Mechanics and Thermodynamics of Fluid-Saturated Highly Elastic Materials," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 118-138 (2010) [Mech. Solids (Engl. Transl.) 45 (1), 94-110 (2010)].
9.  M. Karimi, "Diffusion in Polymer Solids and Solutions," in Mass Transfer in Chemical Engineering Processes. URL: http://www.intechopen.com/books/mass-transfer-in-chemical-engineering-processes/diffusion-in-polymer-solids-and-solutions
10.  M.A. Zakharov, "Evolution of Chemical Potentials in Ternary Solid Solutions with Interdepend Components," Vest. NovSU. Issue: Phys. Math. Sci., 2 (75), 72-76 (2013).
11.  J.E. Adkins, "Diffusion of Fluids trough Aeolotropic Highly Elastic Solids," Arch. Rat. Mech. Anal. 15, 222-234 (1964).
12.  J.E. Adkins, "Non-Linear Diffusion. III. Diffusion through Isotropic Highly Elastic Solids," Phil. Trans. Roy. Soc. Part A. 256, 301-316 (1964).
13.  R.J. Atkin, "Uniqueness Theorems for Linearized Theories of Interacting Continua," Math. 14, 27-42 (1967).
14.  A.E. Green and J.E. Adkins, "A Contribution to the Theory of Non-Linear Diffusion," Arch. Rat. Mech. Anal. 15, 235-246 (1964).
15.  A.E. Green and P.M. Naghdi, "A Dinamical Theory of Interacting Continua," Int. J. Engng. Sci. 3, 231-241 (1965).
16.  A.E. Green and T.R. Steel, "Constitutive Equations for Interactiong Continua," Int. J. Engng. Sci. 4, 483-500 (1966).
17.  M.J. Crochet and P.M. Naghdi, "On Constitutive Equations for Flow of Fluid through an Elastic Solid," Int. J. Engng. Sci. 4, 383-401 (1966).
18.  T.R. Steel, "Application of a Theory of Interacting Continua," J. Mech. Appl. Math. 20, 57-72 (1967).
19.  C. Truesdell, Rational Thermodynamics. A Course of Lectures on Selected Topics (McGraw-Hill, N. Y., 1969).
20.  A.E. Green and P.M. Naghdi, "The Flow of Fluid throught an Elastic Solid," Acta Mech. 9, 329-340 (1970).
21.  A.L. Svistkov, Doctoral Dissertation in Mathematics and Physics (Perm', 2002) [in Russian].
22.  M.A. Guzev, "Chemical Potential Tensor for a Two-Phase Continuous Medium Model," Zh. Prikl. Mekh. Techn. Fiz., 46 (3), 12-22 (2005) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 46 (3), 315-323 (2005)].
23.  L.I. Erokhin, "Chemical Potentials in Multi-Component Alloys," Kond. Sredy Mezhf. Gran. 10 (4) 233-237 (2008).
24.  L. Masaro and X.X. Zhu, "Physical Models of Diffusion for Polymer Solutions, Gels and Solids," Prog. Polym. Sci. 24, 731-775 (1999).
25.  E.Ya. Denisyuk, "Thermodynamics of Deformation and Swelling or Crosslinked Polymers Under Small Deformations," Pol. Sci. Ser. A. 54 (3), 240-247 (2012).
26.  M.A. Spyneva, V.Yu. Konyukhov, and A.F. Benda, "Investigation of Swelling Flexo Dupond," Izv. TulGU Tekh. Nauki, No. 3, 173-182 (2013).
27.  V. Levitas and H. Attariani, "Anisotropic compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon Under Stress Tensor," Sci. Rep., No. 3, 1615-1619 (2014).
28.  A.B. Freidin, "On the Chemical Affinity Tensor for Chemical Reactions in Deformable Materials," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 3, 35-68 (2015) [Mech. Sol. (Engl. Transl.) 50 (3), 260-285 (2015)].
Received 15 June 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100