Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-5pp.584-590

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
A.V. Eremin, V.V. Zhukov, V.A. Kudinov, and I.V. Kudinov, "Resonant and Bifurcation Oscillations of the Rod with Regard to the Resistance Forces and Relaxation Properties of the Medium," Mech. Solids. 53 (5), 584-590 (2018)
Year 2018 Volume 53 Number 5 Pages 584-590
DOI 10.3103/S0025654418080125
Title Resonant and Bifurcation Oscillations of the Rod with Regard to the Resistance Forces and Relaxation Properties of the Medium
Author(s) A.V. Eremin (Samara State Technical University, ul. Molodogvardeyskaya 244, Samara, 443100 Russia, totig@yandex.ru)
V.V. Zhukov (Samara State Technical University, ul. Molodogvardeyskaya 244, Samara, 443100 Russia)
V.A. Kudinov (Samara State Technical University, ul. Molodogvardeyskaya 244, Samara, 443100 Russia)
I.V. Kudinov (Samara State Technical University, ul. Molodogvardeyskaya 244, Samara, 443100 Russia)
Abstract A mathematical model of elastic oscillations of a rod under the influence of an external harmonic load, taking into account the relaxation properties and forces of the medium resistance, has been developed. The derivation of the differential equation of the model is based on taking into account the time dependence of the stresses and strains in the formula of Hooke's law, which, when presented in this way, coincides with the formula of the complicated Maxwell and Kelvin-Voigt models. The study of the model using numerical method showed that when the frequency of the natural oscillations of the rod coincides with the frequency of the external load oscillations (if the resistance of the medium and its relaxation properties are not taken into account), the amplitude of the oscillations (resonance) increases unlimited in time. When taking into account the resistance and relaxation properties of the medium at resonant frequencies, the amplitude of oscillations stabilizes on a value depending on the values of the resistance and relaxation coefficients. At frequencies close to resonant, bifurcation oscillations (beats) are observed, at which there is a periodic increase and decrease of the amplitude of oscillations. At frequencies substantially different from resonant ones, in the case of taking into account resistance forces and relaxation properties of materials, bifurcation oscillations are not observed. In this case, the amplitude of oscillations is stabilized in time at a value depending on the amplitude of oscillations of the external load, the resistance coefficient and the relaxation coefficients.
Keywords wave equation; numerical solution; stress and strain relaxation; external load; medium resistance; resonance and bifurcation oscillations; beats
References
1.  I.V. Saveliev, The Course of General Physics, Vol. 4: Waves. Optics (AST Astrel, Moscow, 2008) [in Russian].
2.  I.M. Babakov, Oscillation Theory (Drofa, Moscow, 2004) [in Russian].
3.  A.N. Tikhonov and A.A. Samarsky, Equations of Mathematical Physics (Izd-vo MGU, Moscow, 1999) [in Russian].
4.  K.S. Kabisov, T.F. Kamalov, and V.A. Lurie, Oscillations and Wave Processes: Theory. Tasks with Solutions (KomKniga, Moscow, 2010) [in Russian].
5.  I.V. Kudinov and V.A. Kudinov, "Exact Closed-Form Solution of the Hyperbolic Equation of String Vibrations with Material Relaxation Properties Taken into Account," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 5, 64-76 (2014) [Mech. Sol. (Engl. Transl.) 49 (5), 531-542 (2014)].
6.  L.D. Akulenko, V.G. Baidulov, D.V. Georgievsky, and S.V. Nesterov, "Evolution of Natural Frequencies of Longitudinal Vibrations of a Bar as Its Cross-Section Defect Increases," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 6, 136-144 (2017) [Mech. Sol. (Engl. Transl.) 52 (6), 798-714 (2017)].
7.  V.N. Chelomey, Fluctuations of Linear Systems. Vibrations in the Technique: a Handbook. (Mashinostroienie, Moscow, 1978) [in Russian].
8.  L.G. Loitsyansky, Fluid and Gas Mechanics (Drofa, Moscow, 2003) [in Russian].
9.  A.P. Filin, Applied Mechanics of a Solid Deformable Body, Vol. 1 (Nauka, Moscow, 1975) [in Russian].
10.  E.M. Kartashov and V.A. Kudinov, Mathematical Models of Heat Conductivity and Thermoelasticity (Sam. Gos. Tekh. Uni., Samara, 2013) [in Russian].
11.  A.V. Luikov, Heat Conduction Theory (Vyshchaya Shkola, Moscow, 1967) [in Russian].
12.  A.V. Luikov, "Application of Methods of Thermodynamics of Irreversible Processes to the Study of Heat and Mass Transfer," Inzh. Fiz. Zh. 9 (3), 287-304 (1965) [J. Engng. Phys. Therm. (Engl. Transl.) 9 (3), 189-202 (1965)].
13.  A.V. Barmasov and V.E. Kholmogorov, General Physics Course for Nature Management. Oscillations and Waves (BHV-Peterburg, Sankt Peterburg, 2009) [in Russian].
Received 09 July 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100