Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-5pp.573-583

Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
A.P. Markeev, "To the Problem of Accuracy for the Pendulum Clock on a Vibrating Base," Mech. Solids. 53 (5), 573-583 (2018)
Year 2018 Volume 53 Number 5 Pages 573-583
DOI 10.3103/S0025654418080113
Title To the Problem of Accuracy for the Pendulum Clock on a Vibrating Base
Author(s) A.P. Markeev (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, 141700 Russia, anat-markeev@mail.ru)
Abstract The problem of the influence of periodic vibrations of the suspension point of a physical pendulum on its nonlinear oscillations in the vicinity of a stable vertical equilibrium position is investigated. The vibrations are assumed to be periodic and occur in the plane of the pendulum motion.

The approximate, time-independent equations of motion are obtained. For the case of pendulum oscillations in the vicinity of the vertical equilibrium position that is allowed by approximate equations, the action - angle variables have been introduced and it has been shown that most of the trajectories of the approximate system are also preserved in the complete system. In the plane of two dimensionless parameters: the oscillation amplitudes of the pendulum and the parameter characterizing the difference in vibration intensity values of the suspension point in the horizontal and vertical directions there are areas in which the pendulum clock is fast and areas in which it is slow.
Keywords pendulum, vibration, stability
References
1.  P.L. Kapitza, "Dynamic stability of the pendulum with vibrating suspension point," Zh. Eksp. Teor. Fiz. 51 (21), 588-597 (1951).
2.  P.L. Kapitza, "Pendulum with Vibrating Suspension," Usp. Fiz. Nauk 44 (1), 7-20 (1951).
3.  T.G. Strizhak, Methods for Studying "Pendulum"-Type Dynamical Systems (Nauka, Alma-Ata, 1981) [in Russian].
4.  I.I. Blekhman, Vibrational Mechanics (Nauka, Moscow, 1994).
5.  O.V. Kholostova, Problem of Dynamics of Solids with Vibrating Suspension (Ins-t Comp. Issl., Moscow-Izhevsk, 2016) [in Russian].
6.  V.I. Yudovich, "Vibrodynamics and Vibrogeometry of Mechanical Systems with Constraints," Usp. Mekh. 4 (3), 26-158 (2006).
7.  A.P. Markeev, "The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point," Prikl. Mat. Mekh. 75 (2), 193-203 (2011) [J. Appl. Math. Mech. (Engl. Transl.) 75 (2), 132-139 (2011)].
8.  V.I. Arnol'd, V.V. Kozlov, and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Editorial URSS, Moscow, 2002) [in Russian]
9.  V.F. Zhuravlev and D.M. Klimov, Applied Methods in the Theory of Oscillations (Nauka, Moscow, 1988) [in Russian].
10.  G.E.O. Giacaglia, Perturbation Methods in Non-Linear Systems (Springer, New York, 1972; Nauka, Moscow, 1979).
11.  I.G. Malkin, Theory of Motion Stability (Nauka, Moscow, 1966) [in Russian].
12.  A.A. Andronov, A.A. Vitt, and S.E. Khaikin, Theory of Oscillation (Fizmatgiz, Moscow, 1959) [in Russian].
13.  V.N. Rubanovskii and V.A. Samsonov, Stability of Steady Motions in Examples and Problems (Nauka, Moscow, 1988) [in Russian].
14.  S.V. Bolotin, A.V. Karapetyan, E.I. Kugushev, and D.V. Treschev, Theoretical Mechanics (Izd-vo Akademiya, Moscow, 2010) [in Russian].
15.  N.G. Chetaev, Stability of Motion. Works in Analytical Mechanics (Izdat. AN SSSR, Moscow-Leningrad, 1962) [in Russian].
16.  A.M. Zhuravsky, Handbook of Elliptic Functions (Izdat. AN SSSR, Moscow-Leningrad, 1941) [in Russian].
17.  I.S. Gradstein and I.M. Ryzhik, Tables of Integrals, Sums, Series and Products (Fizmatgiz, Moscow, 1962) [in Russian].
18.  P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integral for Engineers and Physicists (Springer, Berlin; Gottingen; Heidelberg, 1954).
19.  A.P. Markeev, Theoretical Mechanics (NIZ "Regulyarnaya i Haoticheskaya Dinamika," Moscow-Izhevsk, 2007) [in Russian].
20.  I.G. Malkin, Several Problems of Theory of Nonlinear Vibrations (Nauka, Moscow, 1956) [in Russian].
21.  J. Mozer, "Lectures on Hamiltonian Systems," Mem. AMS., No. 81, 1-60 (1968).
22.  A.I. Neishtadt, "Estimates in the Kolmogorov Theorem on Conservation of Conditionally Periodic Motions," Prikl. Mat. Mekh. 45 (6), 766-772 (1981) [J. Appl. Math. Mech. 45 (6), 766-772 (1981)]
Received 05 April 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100