Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-5pp.510-519

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
L.D. Akulenko, A.A. Gavrikov, and S.V. Nesterov, "Natural Transverse Oscillations of a Rotating Rod of Variable Cross Section," Mech. Solids. 53 (5), 510-519 (2018)
Year 2018 Volume 53 Number 5 Pages 510-519
DOI 10.3103/S0025654418080058
Title Natural Transverse Oscillations of a Rotating Rod of Variable Cross Section
Author(s) L.D. Akulenko (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5 str. 1, Moscow, 105005 Russia)
A.A. Gavrikov (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, gavrikov@ipmnet.ru)
S.V. Nesterov (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia)
Abstract The problem of natural oscillations of a rotating rod of variable cross section is considered. It is believed that the rod is rigidly attached at one end to a rotor with a constant speed orthogonal to the axis of rotation, the other end is assumed to be free. Flexural movements occur in the plane of rotation or perpendicular to it. To determine the natural oscillations, the Euler rod oscillation model is used, taking into account, in addition to the tensile force, the bond reaction force caused by the movements of the neutral axis. Using an original numerical-analytical method, the lower frequencies were calculated for the power and exponential laws of the cross section change.
Keywords Sturm-Liouville theory, rotating rod, eigenvalues, transverse oscillations, method of accelerated convergence, variable section rod, linear Hamiltonian system, boundary value problem
References
1.  V.Ph. Zhuravlev and D.M. Klimov, Applied Methods of the Theory of Oscillations (Nauka, Moscow, 1988) [in Russian].
2.  D.M. Klimov, V.Ph. Zhuravlev, and Yu.K. Zbanov, Quartz Hemispherical Resonator (Wave-Based Solid-State Gyroscope ("Kim L.A.," Moscow, 2017) [in Russian].
3.  A.G. Kostyuk, V.V. Frolov, A.E. Bulkin, and A.D. Trukhniy, Steam and Gas Turbines for Power Plants (MEI, Moscow, 2008) [in Russian].
4.  J.R. Banerjee, H.Su, and D.R. Jackson, "Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method," J. Sound Vib. 298 (4-5), 1034-1054 (2006).
5.  O. Özdemir and M.O. Kaya, "Flapwise Bending Vibration Analysis of a Rotating Tapered Cantilever Bernoulli-Euler Beam by Differential Transform Method," J. Sound Vib. 289 (1), 413-420 (2006).
6.  O. Özdemir and M.O. Kaya, "Flapwise Bending Vibration Analysis of Double Tapered Rotating Euler-Bernoulli Beam by Using the Differential Transform Method," Mecc. 41 (6), 661-670 (2006).
7.  R. Attarnejad and A. Shahba, "Dynamic Basic Displacement Functions in Free Vibration Analysis of Centrifugally Stiffened Tapered Beams; a Mechanical Solution," Mecc. 46 (6), 1267-1281 (2011).
8.  K. Sarkar and R. Ganguli, "Rotating Beams and Non-Rotating Beams with Shared Eigenpair for Pinned-Free Boundary Condition," Mecc. 48 (7), 1661-1676 (2013).
9.  Y. Chen, J. Zhang, and H. Zhang, "Flapwise Bending Vibration of Rotating Tapered Beams Using Variational Iteration Method," J. Vib. Cont. 22 (15), 3384-3395 (2014).
10.  Y. Chen, J. Zhang, H. Zhang, X. Li, et al., "Extraction of Natural Frequencies and Mode Shapes of Rotating Beams by Variational Iteration Method," Int. J. Struct. Stab. Dyn. 16 (3), 145-156 (2016).
11.  D. Adair and M. Jaeger, "A Power Series Solution for Rotating Nonuniform Euler-Bernoulli Cantilever Beams," J. Vib. Cont. 24 (17), 3855-3864 (2017).
12.  K. Mazanoglu and S. Guler, "Flap-Wise and Chord-Wise Vibrations of Axially Functionally Graded Tapered Beams Rotating Around a Hub," Mech. Syst. Sign. Proc. 89, 97-107 (2017).
13.  M. Nourifar, A. Keyhani, and A. Aftabi Sani, "Free Vibration Analysis of Rotating Euler-Bernoulli Beam with Exponentially Varying Cross-Section by Differential Transform Method," Int. J. Struct. Stab. Dyn. 18 (2), 1850024 (2018).
14.  G. Bulut, "Effect of Taper Ratio on Parametric Stability of a Rotating Tapered Beam," Eur. J. Mech. A Sol. 37, 344-135 (2013).
15.  D. Adair and M. Jaeger, "Vibration Analysis of a Uniform Pre-Twisted Rotating Euler-Bernoulli Beam Using the Modified Adomian Decomposition Method," Math. Mech. Sol. 23 (9), 1345-1363 (2017).
16.  A. Bazoune and Y.A. Khulief, "A Finite Beam Element for Vibration Analysis of Rotating Tapered Timoshenko Beams," J. Sound Vib. 156 (1), 141-164 (1992).
17.  S.S. Rao and R.S. Gupta, "Finite Element Vibration Analysis of Rotating Timoshenko Beams," J. Sound Vib. 242 (1), 103-124 (2001).
18.  S.-Y. Lee, S.-M. Lin, and Y.-S. Lin, "Instability and Vibration of a Rotating Timoshenko Beam with Precone," Int. J. Mech. Sci. 51 (2), 114-121 (2009).
19.  D.V. Bambill, C.A. Rossit, R.E. Rossi, D.H. Felix, et al., "Transverse Free Vibration of non Uniform Rotating Timoshenko Beams with Elastically Clamped Boundary Conditions," Mecc. 48 (6), 1289-1311 (2013).
20.  S. Rajasekaran, "Buckling and Vibration of Axially Functionally Graded Nonuniform Beams Using Differential Transformation Based Dynamic Stiffness Approach," Mecc. 48 (5), 1053-1070 (2013).
21.  J.R. Banerjee and D. Kennedy, "Dynamic Stiffness Method for Inplane Free Vibration of Rotating Beams Including Coriolis Effects," J. Sound Vib. 333 (26), 7299-7312 (2014).
22.  A.-Y. Tang, X.-F. Li, J.-X. Wu, and K.Y. Lee, "Flapwise Bending Vibration of Rotating Tapered Rayleigh Cantilever Beams," J. Constr. Steel Res. 112, 1-9 (2015).
23.  Y. Chen, J. Zhang, and H. Zhang, "Free Vibration Analysis of Rotating Tapered Timoshenko Beams via Variational Iteration Method," J. Vib. Contr. 23 (2), 220-234 (2017).
24.  Ö. Turhan and G. Bulut, "On Nonlinear Vibrations of a Rotating Beam," J. Sound Vib. 322 (1), 314-335 (2009).
25.  H. Arvin and F. Bakhtiari-Nejad, "Non-linear modal analysis of a Rotating Beam," J. Non-Lin. Mech. 46 (6), 877-897 (2011).
26.  H. Kim, H.H. Yoo, and J. Chung, "Dynamic Model for Free Vibration and Response Analysis of Rotating Beam," J. Sound Vib. 332 (22), 5917-5928 (2013).
27.  Y. Huo and Z. Wang, "Dynamic Analysis of a Rotating Double-Tapered Cantilever Timoshenko Beam," Arch. Appl. Mech. 86 (6), 1147-1161 (2016).
28.  F. Bekhoucha, S. Rechak, L. Duigou, and J.M. Cadou, "Nonlinear Free Vibrations of Centrifugally Stiffened Uniform Beams at High Angular Velocity," J. Sound Vib. 379, 177-190 (2016).
29.  L. Li, Y.H. Li, Q.K. Liu, and B.K. Jiang, "Effect of Balance Weight on Dynamic Characteristics of a Rotating Wind Turbine Blade," J. Eng. Math. 97 (1), 49-65 (2016).
30.  L.D. Akulenko and S.V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications (Boca Raton: Chapman and Hall/CRC, 2005).
31.  L.D. Akulenko, A.A. Gavrikov, and S.V. Nesterov, "Numerical Solution of Vector Sturm-Liouville Problems with Dirichlet Conditions and Nonlinear Dependence on the Spectral Parameter," Zh. Vych. Mat. Mat. Fiz. 57 (9), 1503-1516 (2017) [Comp. Math. Math. Phys. (Engl. Transl.) 57 (9), 1484-1497 (2017)].
32.  A.A. Gavrikov, "Numerical Solution of Eigenproblems for Linear Hamiltonian Systems and Their Application to Non-Uniform Rod-Like Systems," AIP Conf. Proc. 1863 (1), 560032 (2017).
33.  A.A. Gavrikov, "An Iterative Solution Approach to Eigenvalue Problems for Linear Hamiltonian Systems and its Application to a Hybrid System Control Problem," in Proc. 22-st Int. Conf. Methods and Models in Automation and Robotics (MMAR) (Miedzyzdroje, Poland, 2017), p. 588-593.
34.  L.D. Akulenko, A.A. Gavrikov, and S.V. Nesterov, "Natural Vibrations of a Liquid-Transporting Pipeline on an Elastic Base," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 123-132 (2018) [Mech. Sol. (Engl. Transl.) 53 (1), 101-110 (2018)].
35.  L.D. Akulenko and N.N. Bolotnik, "On the Controlled Rotation of an Elastic Rod," Prikl. Mat. Mekh. 46 (1), 587-595 (1982).
36.  L.D. Akulenko and A.A. Gukasian, "Control of the Plane Movements of an Elastic Link of a Manipulator," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 33-41 (1983).
37.  L.D. Akulenko, L.I. Korovina, and S.V. Nesterov, "Natural Transverse Vibrations of a Rotating Rod," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 135-144 (2007) [Mech. Sol. (Engl. Transl.) 42 (1), 1-11 (2007)].
38.  S.P. Timoshenko, D.H. Young, and W. Weaver, Oscilations in Engineering (Fizmatlit, Moscow, 1985) [in Russian].
39.  M. Roseau, Vibrations in Mechanical Systems (Springer, New York, 1987).
Received 20 May 2018
Link to Fulltext
<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100