Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-5pp.520-526

Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
D.V. Georgievskii, "The Problems in Terms of Stresses of Diffusion-Vortex Class in Infinite Rigid Viscoplastic Space," Mech. Solids. 53 (5), 520-526 (2018)
Year 2018 Volume 53 Number 5 Pages 520-526
DOI 10.3103/S002565441808006X
Title The Problems in Terms of Stresses of Diffusion-Vortex Class in Infinite Rigid Viscoplastic Space
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992 Russia; Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, georgiev@mech.math.msu.su)
Abstract The statements and exact self-similar solutions of diffusion-vortex problems in terms of stresses simulating a nonstationary one-dimensional shear in some curvilinear orthogonal coordinate systems of a two-constant stiff-viscous plastic medium (Bingham body) are analyzed. Such problems include the diffusion of plane and axisymmetric vortex layers, as well as the diffusion of a vortex filament. The shear occurs in regions of unlimited space expanding with time with a pre-unknown boundary, and a possible way of specifying an additional condition at infinity is described. A generalized vortex diffusion is introduced into consideration, containing a formulation with several parameters, including the order of the singularity peculiarities at zero. Self-similar solutions are constructed in which the order of the singularity corresponds to or does not correspond to the type of shift in the selected coordinate system.
Keywords nonstationary shear, vortex diffusion, stiff-viscous-plastic body, yield strength, viscosity, self-similarity, parabolic systems
References
1.  D.M. Klimov, A.G. Petrov, and D.V. Georgievskii, Viscous-Plastic Flows: Dynamic Chaos, Stability, Mixing (Nauka, Moscow, 2005) [in Russian].
2.  D.V. Georgievskii, "The Diffusion of a Discontinuity of the Shear Stress at the Boundary of a Viscoplastic Half-Plane," Prikl. Mat. Mekh. 70 (5), 884-892 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (5), 796-803 (2006)].
3.  S.N. Kruzhkov, "On Some Problems with Unknown Boundaries for the Heat Conduction Equation," Prikl. Mat. Mekh. 31 (6), 1009-1020 (1967) [J. Appl. Math. Mech. (Engl. Transl.) 31 (6), 1014-1024 (1967)].
4.  P.M. Ogibalov and A.Kh. Mirzadzhanzade, Unsteady Motions of Visco-Plastic Media (Nauka, Moscow, 1977) [in Russian].
5.  A.N. Tikhonov and A.A. Samarsky, Equations of Mathematical Physics (Izd-vo MGU, Moscow, 1999) [in Russian].
6.  D.V. Georgievskii, "Self-Similar Solutions in the Problem of Generalized Vortex Diffusion," Izv. Akad. Nauk. Mekh. Zhid. Gaz., No. 2, 3-12 (2007) [Fluid Dyn. (Engl. Transl.) 42 (2), 151-159 (2007)].
7.  E. Kamke, Handbook of Ordinary Differential Equations (Mir, Moscow, 1991) [Differentialgleichungen. Lösungsmethoden und Lösungen. I. Gewöhnliche Differentialgleichungen (Academische Verlag., Leipzig, 1959)]
Received 23 April 2018
Link to Fulltext
<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100