Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-3pp.349-353

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
A.R. Arutyunyan and R.A. Arutyunyan, "Application of the Griffith Energy Concept to the Formulation of the Strength Criteria for Nonlinear-Elastic Medium with a Crack," Mech. Solids. 53 (3), 349-353 (2018)
Year 2018 Volume 53 Number 3 Pages 349-353
DOI 10.3103/S0025654418070130
Title Application of the Griffith Energy Concept to the Formulation of the Strength Criteria for Nonlinear-Elastic Medium with a Crack
Author(s) A.R. Arutyunyan (St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, a.arutyunyan@spbu.ru)
R.A. Arutyunyan (St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia)
Abstract In connection with the massive introduction of nanocrystalline and nanocomposite materials in which elastic deformation can reach more than 3% into engineering practice, arises the need for the formulation of nonlinear elastic equations and the basic criteria for fracture mechanics. Current coefficient of transverse deformation [1, 2, 3] is used in this article and nonlinear elastic equations and a modified Griffith strength criterion [4] for a cracked specimen are formulated. On the basis of this criterion, the values of theoretical and real strength are estimated. Three cases are considered: an ideal lattice without defects, nanocrystalline and nanocomposite materials with crack sizes within a few nanometers, a laboratory sample with a micron size of cracks. It is shown that the theoretical strength is two orders of magnitude greater than the strength of the laboratory sample. This result is in agreement with the known estimates in the literature [5]. In the case when the material has cracks of the order of nanosizes, there is a significant reduction in strength (within one order of magnitude of theoretical strength).
Keywords nonlinear elastic medium, Griffith energy concept, current transverse strain coefficient, critical crack length, critical stress, theoretical strength, real strength
References
1.  R. A. Arutyunyan, The problem of deformational aging and long-term destruction in the mechanics of materials (Izd-vo StPbGU, St. Petersburg, 2004) [in Russian].
2.  R. A. Arutyunyan, "Creep Fracture of Nonlinear Viscoelastic Media Undergoing UV Radiation," Int. J. Fract. 132 (1), L3-L8 (2005).
3.  A. Y. Ishlinsky, "Euler Description of the Deformation of one Isotropic Medium," in Applied Problems of Mechanics, Vol. 1 (Nauka, Moscow, 1986) pp. 333-335 [in Russian].
4.  A. A. Griffith, "The Phenomena of Rupture and Flow in Solids," Phil. Trans. Roy. Soc. London. Ser. A 221, 163-198 (1921).
5.  J. F. Knott, Fundamentals of Fracture Mechanics (Butterworth and Co., 1973; Metallurgiya, Moscow, 1978) [in Russian].
6.  S. N. Kulkov, "Structure, Phase Composition and Mechanical Properties of ZrO2-based Nanosystems," Fizich. Mezomekh. 10 (3), 81-94 (2007) [Phys. Mesomech. (Engl. Transl.) 11 (1-2), 29-41 (2008)].
7.  S. N. Kul'kov, V. I. Maslovskii, S. P. Buyakova, and D. S. Nikitin, "The Non-Hooke’s Behavior of Porous Zirconia Subjected to High-Rate Compressive Deformation," Zh. Tekhn. Fiz. 72 (3), 38-42 (2002) [Techn. Phys. (Engl. Transl.) 47 (3), 320-324 (2002)].
8.  W. Koster and H. Franz, "Poisson's Ratio for Metals and Alloys," Metal. Rev. 6 (21), 1-56 (1961).
9.  A. M. Zhukov, "On the Poisson's Ratio in the Plastic Region," Izv. Akad. Nauk SSSR. OTN No. 12, 86-91 (1954).
10.  H. Liebowitz (Editor), Fracture: an Advanced Treatise. Vol. 7. Fracture of Nonmetals and Composites. Part 1: Inorganic Materials (Glass, Rocks, Composites, Ceramics, Ice) (Mir, Moscow, 1976) [in Russian].
11.  S. P. Timoshenko and J. Goodier, Theory of Elasticity (Nauka, Moscow, 1975; McGraw-Hill, New York, 1987).
12.  A. F. Ioffe, Crystal Physics (Gostekhizdat, Moscow, 1929) [in Russian].
13.  A. F. Ioffe, N. V. Kirpicheva, and M. A. Levitskaya, "Deformation and Strength of Crystals," Zh. Russ. Fiz.-Khim. Obshch. im. D. I. Mendeleeva. Ch. Fiz. 56, 489-503 (1924).
14.  I. S. Grigorieva and E. Z. Meilikhov (Editors), Reference Book. Physical Quantities (Energoatomizdat, Moscow, 1991) [in Russian].
Received 20 October 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100