Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-3pp.354-359

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
G.Z. Sharafutdinov, "Investigation of the Photoelasticity Method," Mech. Solids. 53 (3), 354-359 (2018)
Year 2018 Volume 53 Number 3 Pages 354-359
DOI 10.3103/S0025654418070142
Title Investigation of the Photoelasticity Method
Author(s) G.Z. Sharafutdinov (Institute of Mechanics, Lomonosov Moscow State University, Michurinskii pr. 1, Moscow, 119192, Russia, sharaf@imec.msu.ru)
Abstract The physical principles of the polarization-optical method for studying stresses that is commonly called the photoelasticity method are considered. Using the model of a linear oscillator it is established that the birefringence effect observed in some materials during their deformation can be explained by a shift in the eigenfrequencies of the oscillators, namely charged particles inside the deformed body.

This approach has been used in determining the parameters of the pair interaction potential, in particular, the Mie potential using the experimentally determined birefringence value. The expression for the shape of the strain-optical coefficient, that is, a quantity that serves to relate the difference in the principal deformations and the relative path difference is obtained.
Keywords photoelasticity method, birefringence, linear oscillator, Mie potential, strain-optical coefficient
References
1.  A. Ya. Aleksandrov and M. Kh. Akhmetzyanov, Polarization-Optical Methods of the Mechanics of a Deformable Body (Nauka, Moscow, 1973) [in Russian].
2.  G. Z. Sharafutdinov, "On the Phenomenon of Birefringence in Transparent Dielectrics," in On Some Problems of Behavior of Viscous and Elastic-Plastic Structures, Ed. by V. P. Netrebko (Izd. Moscow Univ., Moscow, 1989).
3.  A. M. Krivtsov and N. V. Krivtsova, "Method of Particles and its Application to Mechanics of Solids," Dal'nevost. Mat. Zh. 3 (2), 254-276 (2002).
4.  E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, Theoretical Mechanics. Determination of Equivalent Elastic Characteristics of Discrete Systems (SPbSPU, St. Petersburg, 2004) [in Russian].
5.  C. Kittel, Introduction to Solid State Physics (Phismatlit, Moscow, 1963) [in Russian].
6.  Qian Xuesen, Physical Mechanics (Mir, Moscow, 1963) [in Russian].
7.  R. W. Christy and A. Pytte, The Structure of Matter: an Introduction to Modern Physics (Nauka, Moscow, 1969) [in Russian].
8.  A. Animalu, Intermediate Quantum Theory of Crystalline Solids (Mir, Moskow, 1981) [in Russian].
9.  D. S. Chemla (Editor), Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1-2 (Academic Press, 1987l; Mir, Moscow, 1989).
10.  L. I. Mandelstam, Lectures on Optics, Theory of Relativity and Quantum Mechanics (Nauka, Moskow, 1972) [in Russian].
11.  E. I. Butikov, Optics (Nevskiy dialect, St.Petersburg, 2003) [in Russian].
12.  B. M. Tareev, Physics of Dielectric Materials (Energiya, Moscow, 1973) [in Russian].
13.  G. Z. Sharafutdinov, "Basic Relations of Photoelasticity," Moscow Univ. Mech. Bull. 67 (1), 1-4 (2012).
Received 28 July 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100