Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-3pp.249-255

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
B.M. Shifrin, "Three Models of Shimmy in Rolling Tasks of a Towed Pneumatic Wheel," Mech. Solids. 53 (3), 249-255 (2018)
Year 2018 Volume 53 Number 3 Pages 249-255
DOI 10.3103/S0025654418070026
Title Three Models of Shimmy in Rolling Tasks of a Towed Pneumatic Wheel
Author(s) B.M. Shifrin (Flight Academy of the National Aviation University, ul. Dobrovol'skogo 1, Kropivnitskii, 25005 Ukraine, b_shifrin@mail.ru)
Abstract Rolling without sliding of the pneumowheel, towed by means of a rigid device of length L, is considered. The angles of rotation of this device during vibrations are studied. Cases LL* and L>L* are distinguished, where L* is the length at which the system is located at the boundary of stability. To describe the interaction of the running surface of the tire with the supporting plane, three well-known linear rolling models are used - the nonholonomic one, as well as the string and slip models. The case L>L* is studied with the help of reduced mathematical models - modeling oscillators. The main results of the study: all three models indicate the same length L*D/2 (D is the outer diameter of the free tire), in the parameter range studied the first two models actually coincide, with an imbalance of the pneumatic wheel and LL* - which is often found in practice - parametric resonances occur if the Clarke-Dodge-Naibekken numbers DΩ/VA (VA is the speed of the hinge-hitch, Ω is the natural frequency of oscillations when the pneumatic wheel does not roll) belong to the natural series. In addition, the effect of the speed VA on the natural frequency of oscillation is quantitatively described, and comments are made on the verification of shimming models and the relationship of mechanical permanent tires.
Keywords shimmy, towed pneumatic wheel, tire, stability limit, oscillation
References
1.  R. Van der Valk and H. B. Pacejka "An Analysis of a Civil Main Gear Shimmy Failure," Vehicle Syst. Dyn. 22 (2), 97-121 (1993).
2.  V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (NITs "Regular. Khaotich. Din.," Moscow-Izhevsk, 2010).
3.  D. Takács, G. Orosz, and G. Stépán, "Delay Effects in Shimmy Dynamics of Wheels with Stretched String-Like Tyres," Eur. J. Mech. A/Solids 28 (3), 516-525 (2009).
4.  G. Somieski, "Shimmy Analysis of a Simple Aircraft Nose Landing Gear Model Using Different Mathematical Methods," Aerospace Science and Technology 1 (8), 545-555 (1997).
5.  D. Takács, Dynamics of Towed Wheels: Nonlinear Theory and Experiments, PhD dissertation (Budapest Univer. Technol. Econom., Budapest, 2010).
6.  B. M. Shifrin, "Friction on the Pneumatic Wheel: a Special Towed Pneumatic Wheel," Probl. Tribol., No. 3, 54-58 (2014).
7.  N. P. Plakhtienko and B. M. Shifrin, "The Ishlinskii Oscillator Model in the Keldysh Shimmy Problem," Prikl. Mat. Mekh. 80 (2), 176-182 (2016) [J. Appl. Math. Mech. (Engl. Transl.) 80 (2), 127-132 (2016)].
8.  M. V. Keldysh, "Shimmy Front Wheel Tricycle," in Selected Works. Mechanics (Nauka, Moscow, 1985), pp. 491-530 [in Russian].
9.  S. Clark, R. Dodge, and G. Nybakken, "Dynamic Properties of Aircraft Tires," J. Aircraft 11 (3), 166-172 (1974).
10.  H. B. Pacejka, Tyre and Vehicle Dynamics (Butterworth-Heinemann, Oxford, 2002).
11.  B. M. Shifrin and A. V. Izvalov, "Experimental Verification of the Model of M. V. Keldysh Interaction of the Pneumowheel with the Supporting Plane," Probl. Tribol., No. 1, 92-98 (2015).
12.  J. M. Pevzner, "On Rolling Tires with Rapidly Changing Modes of Disposal," Avtomob. Promyshl., No. 6, 15-19 (1968).
13.  Y. Rocard, L'Instabilité en Mécanique: Automobiles, Avions, Ponts Suspendus (Masson, Paris, 1954; Visshaya Shkola, Moscow, 1959).
14.  V. L. Biderman, Theory of Mechanical Vibrations (Visshaya Shkola, Moscow, 1980).
15.  P. A. Kruchinin, S. I. Zlochevsky, and A. D. Derbaremdiker, "On the excitation of parametric oscillations of steered wheels," Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 3, 27-32 (1987).
16.  A. Yu. Ishlinsky, Applied Problems of Mechanics, Book 1: Mechanics of Viscoplastic and Not-Completely-Elastic Bodies (Nauka, Moscow, 1986) [in Russian].
Received 20 September 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100