Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-1pp.73-84

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
Yu.E. Ivanova and V.E. Ragozina, "Perturbation Method in the Problem of Compression-Shear Shock Load for a Nonlinear Elastic Half-Space," Mech. Solids. 53 (1), 73-84 (2018)
Year 2018 Volume 53 Number 1 Pages 73-84
DOI 10.3103/S0025654418010090
Title Perturbation Method in the Problem of Compression-Shear Shock Load for a Nonlinear Elastic Half-Space
Author(s) Yu.E. Ivanova (Institute for Automation and Control Processes of the Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia; Far East Federal University, ul. Sukhanova 8, Vladivostok, 690000 Russia, ivanova@iacp.dvo.ru)
V.E. Ragozina (Institute for Automation and Control Processes of the Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia)
Abstract On the example of a one-dimensional nonstationary problem of oblique impact on the boundary of a nonlinear elastic isotropic half-space, the question of the manifestation of nonlinear deformation effects via basic evolution equations is studied. Much attention is given to the behavior of the solution behind the leading edge of a quasi-transverse shock wave. For particular cases of boundary conditions, it is shown that the onset region of the evolution equation of a quasi-transverse wave is preceded by a series of preliminary transitions to the intermediate internal problems of the small parameter method determined by the type of preliminary bulk deformation. This deformation consistently affects the distortion of the characteristic coordinates and the leading edge of the quasi-transverse process. As a consequence, the transition to the evolution equation of quasi-transverse waves occurs with simultaneous change of all independent variables of the boundary value problem.
Keywords nonlinear elastic medium, one-dimensional nonstationary problem, longitudinal and quasi-transverse shock wave, oblique impact, small parameter, evolution equations, nonlinear distortion of characteristics
References
1.  D. R. Bland, Nonlinear Dynamic Elasticity (Blaisdell, London, 1969; Mir, Moscow, 1972).
2.  A. G. Kulikovskii and E. I. Sveshnikov, Nonlinear Waves in Elastic Media (Moskovskii Litsei, Moscow, 1998) [in Russian].
3.  A. G. Kulikovskii and A. P. Chugainova, "Classical and Nonclassical Discontinuities and Their Structures in Nonlinear Elastic Media with Dispersion and Dissipation," Trudy Mat. Inst. Steklov 7, 5-148 (2007) [Proc. Steklov Inst. Math. (Engl. Transl.) 276 (2), 1-68 (2012)].
4.  A. A. Burenin and A. D. Chernyshov, "Shock Waves in an Isotropic Elastic Space," Prikl. Mat. Mekh. 42 (4), 711-717 (1978) [J. Appl. Math. Mech. (Engl. Transl.) 42 (4), 758-765 (1978)].
5.  S. K. Godunov and V. S. Ryaben'kii, Difference Schemes (Nauka, Moscow, 1973) [in Russian].
6.  B. L. Rozhdestvenski and N. N. Ianenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (AMS, USA, 1983; Nauka, Moscow, 1968).
7.  M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).
8.  Yu. A. Rossikhin and M. V. Shitikova, "Ray Method for Solving Dynamic Problems Connected with the Propagation of Wave Surfaces of Strong and Weak Discontinuities," Appl. Mech. Rev. 48 (1), 1-39 (1995).
9.  J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell Publishing Company, Waltham, Mass, 1968; Mir, Moscow, 1972).
10.  Yu. E. Ivanova and V. E. Ragozina, "On the Evolution Equation of Longitudinal Shock Waves in Elastic Media with Weak Inhomogeneity," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 125-135 (2014) [Mech. Solids (Engl. Transl.) 49 (5), 587-595 (2014)].
11.  V. E. Ragozina and Yu. E. Ivanova, "The Evolution Equation of Transverse Shock Waves in Solids," Dal'nevost. Mat. Zh., 13 (1), 116-126 (2013).
12.  V. E. Ragozina and Yu. E. Ivanova, "On the Asymptotic Representation of Multidimensional Problems Solutions of Shock Dynamics of Nonlinear Elastic Medium," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost. 21 (3), 131-143 (2014).
13.  T. Y. Thomas, Plastic Flow and Fracture in Solids (Academic Press, New York, 1961; Mir, Moscow, 1964).
14.  G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, New York, 1974; Mir, Moscow, 1977).
15.  A. I. Lurie, Nonlinear Theory of Elasticity (Elsevier Science Pub. Co., New York, 1990; Nauka, Moscow, 1980).
16.  A. V. Porubov, Localization of Nonlinear Deformation Waves (Fizmatlit, Moscow, 2009) [in Russian].
17.  L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959; Nauka, Moscow, 1977).
Received 28 May 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100