Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-1pp.85-92

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
A.S. Begun, L.V. Kovtanyuk, and A.O. Lemza, "Change of Accumulation Mechanisms of Irreversible Deformations of Materials in an Example of Viscometric Deformation," Mech. Solids. 53 (1), 85-92 (2018)
Year 2018 Volume 53 Number 1 Pages 85-92
DOI 10.3103/S0025654418010107
Title Change of Accumulation Mechanisms of Irreversible Deformations of Materials in an Example of Viscometric Deformation
Author(s) A.S. Begun (Institute for Automation and Control Processes of the Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia)
L.V. Kovtanyuk (Institute for Automation and Control Processes of the Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia; Far East Federal University, ul. Sukhanova 8, Vladivostok, 690000 Russia, lk@iacp.dvo.ru)
A.O. Lemza (Far East Federal University, ul. Sukhanova 8, Vladivostok, 690000 Russia)
Abstract Within the framework of the model of large deformations, the deformation of a material exhibiting elastic, viscous, and plastic properties and placed between two rigid cylinders is investigated when turning the internal cylinder. The accumulation of irreversible deformations prior to the onset of plastic flow and upon its termination is associated with creep. Reversible and irreversible deformations according to the model in question are determined by differential transport equations. To calculate the displacement fields, stresses, and reversible, irreversible, and complete deformations, a system of partial differential equations is obtained, for which a finite-difference scheme is constructed.
Keywords large deformations, elasticity, plasticity, viscosity, creep
References
1.  B. V. Gorev, I. D. Klopotov, G. A. Raevskaya, et al., "Problem of Processing Materials by Pressure under Creepage Conditions," Zh. Prikl. Mekh. Tekhn. Fiz., No. 5, 185-191 (1980) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 21 (5), 729-735 (1980)].
2.  A. I. Oleinikov and A. I. Pekarsh, Integrated Design of Processes of Monolithic Panel Manufacturing (Ekom., Moscow, 2009) [in Russian].
3.  S. V. Belykh, K. S. Bormotin, A. A. Burenin, et al., "On Large Isothermal Deformations of Materials with Elastic, Viscous, and Plastic Properties," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., No. 4, 144-156 (2014).
4.  A. S. Begun, A. A. Burenin, and L. V. Kovtanyuk, "Large Irreversible Deformations under Conditions of Changing Mechanisms of Their Formation and the Problem of Definition of Plastic Potentials," Dokl. Ross. Akad. Nauk 470 (3), 275-278 (2016) [Dokl. Phys. (Engl. Transl.) 61 (9), 463-466 (2016)].
5.  A. A. Burenin, G. I. Bykovtsev, and L. V. Kovtanyuk, "A Simple Model of Finite Strain in an Elastoplastic Medium," Dokl. Ross. Akad. Nauk 347 (2), 199-201 (1996) [Dokl. Phys. (Engl. Transl.) 41 (3), 127-129 (1996)].
6.  A. A. Burenin and L. V. Kovtanyuk, Large Irreversible Deformations and Elastic Aftereffect (Dal'nauka, Vladivostok, 2013) [in Russian].
7.  E. H. Lee, "Elastic-Plastic Deformation at Finite Strains," Trans. ASME. J. Appl. Mech. 36 (1), 1-6 (1969).
8.  V. I. Kondaurov, "Equations of ElastoviscoplasticMediumwith Finite Deformations," Zh. Prikl. Mekh. Tekh. Fiz. 23 (4), 133-139 (1982) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 23 (4), 584-591 (1982)].
9.  V. I. Levitas, Large Elastoplastic Deformations of Materials under High Pressure (Naukova Dumka, Kiev, 1987) [in Russian].
10.  V. P. Myasnikov, "Equations of Motion of Elastoplastic Materials at Large Strains," Vestn. Dal'nevost. Otd. Ross. Akad. Nauk, No. 4, 8-13 (1996).
11.  A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Strains: Theory, Algorithms, Applications (Nauka, Moscow, 1986) [in Russian].
12.  A. A. Rogovoi, "Constitutive Relations for Finite Elastic-Inelastic Strains," Zh. Prikl. Mekh. Tekhn. Fiz., 46 (5), 138-149 (2005) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 46 (5), 730-739 (2005)].
13.  Z. Xia and F. Ellyn, "A Finite Elastoplastic Constitutive Formulation with New Co-Rotational Stress-Rate and Strain-Hardening Rule," Trans ASME. J. Appl. Mech. 62 (3), 733-739 (1995).
14.  A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, "The Possibility of Reiterated Plastic Flow at the Overall Unloading of an Elastoplastic Medium," Dokl. Ross. Akad. Nauk 575 (6), 767-769 (2000) [Dokl. Phys. (Engl. Transl.) 45 (12), 694-696 (2000)].
15.  L. V. Kovtanyuk, "On the Forcing of an Elastoviscoplastic Material through an Inflexible Circular Cylindrical Die," Dokl. Ross. Akad. Nauk 400 (6), 764-767 (2005) [Dokl. Phys. (Engl. Transl.) 50 (2), 112-114 (2005)].
16.  A. A. Burenin, L. V. Kovtanyuk, and A. L. Mazelis, "The Pressing of an Elastoviscoplastic Material between Rigid Coaxial Cylindrical Surfaces," Prikl. Mat. Mekh. 70 (3), 481-489 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (3), 437-445 (2006)].
17.  A. A. Burenin and L. V. Kovtanyuk, "On Elastic Strains and a Viscoplastic Flow in a Heavy Layer Placed on an Inclined Plane," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 158-170 (2010) [Mech. Solids (Engl. Transl.) 45 (2), 284-294 (2010)].
18.  A. A. Burenin and L. V. Kovtanyuk, "The Development and Deceleration of the Flow of an Elastoplastic Medium in a Cylindrical Tube," Prikl. Mat. Mekh. 77 (5), 788-798 (2013) [J. Appl. Math. Mech. (Engl. Transl.) 77 (5), 566-572 (2013)].
19.  A. A. Bazhin and E. V. Murashkin, "Creep and Stress Relaxation in the Vicinity of a Micropore under the Conditions of Hydrostatic Loading and Unloading," Dokl. Ross. Akad. Nauk 445 (6), 640-642 (2012) [Dokl. Phys. (Engl. Transl.) 57 (8), 294-296 (2012)].
20.  F. N. Norton, The Creep Steel of High Temperature (McGpaw-Hill, New York, 1929).
21.  V. A. Znamensky and D. D. Ivlev, "On the Equations of a Viscoplastic Body under Piecewise-Linear Potentials," Izv. Akad. Nauk SSSR. OTN. Mekh. Mashinostr., No. 6, 114-118 (1963).
Received 15 July 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100