Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2017-6pp.653-662

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 52, Issue 6 / 2017 | Next article >>
L.V. Kovtanyuk and G.L. Panchanko, "On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium," Mech. Solids. 52 (6), 653-662 (2017)
Year 2017 Volume 52 Number 6 Pages 653-662
DOI 10.3103/S002565441706005X
Title On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium
Author(s) L.V. Kovtanyuk (Institute for Automation and Control Processes of the Far East Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok, 690041 Russia)
G.L. Panchanko (Institute of Machinery and Metallurgy of the Far East Branch of the Russian Academy of Sciences, ul. Metallurgov 1, Komsomolsk-on-Amur, 681005 Russia; Vladivostok State University of Economics and Service, ul. Gogolya 41, Vladivostok, 690014 Russia, panchenko.21@yandex.ru)
Abstract The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero. Various plasticity conditions are considered with regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.
Keywords elasticity, plasticity, viscosity, compressibility, small strains
References
1.  L. Prandtl, "Examples of Hencky's Theorem Application to Equilibrium of Plastic Bodies," in Theory of Plasticity (Izd. Inostr. Lit., Moscow, 1948), pp. 102-113 [in Russian].
2.  A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1 (Wiley, New York, 1950; Izd. Inostr. Lit., Moscow, 1954).
3.  A. Nadai, Theory of Flow and Fracture of Solids, Vol. 2 (Wiley, New York, 1950; Izd. Inostr. Lit., Moscow, 1969).
4.  V. V. Sokolovskii, Theory of Plasticity (Vysshaya Shkola, Moscow, 1969) [in Russian].
5.  A. A. Il'yushin, "Problems of the Theory of Plastic Matter Flow on a Surface," Prikl. Mat. Mekh. 18 (3), 265-288 (1954) [J. Appl. Math. Mech. (Engl. Transl.)].
6.  A. A.Il'yushin, "Complete Plasticity in Processes of Flow between Rigid Surfaces, an Analogy with Sand Embarkment and Several Applications," Prikl. Mat. Mekh. 19 (6), 693-713 (1955) [J. Appl. Math. Mech. (Engl. Transl.)].
7.  G. I. Bykovtsev, Selected Problems of Mechanics of Deformable Solids. Collection of papers (Dal'nauka, Vladivostok, 2002) [in Russian].
8.  A. I. Kuznetsov, "Problem of an Inhomogeneous Plastic Layer," Prikl. Mekh. 12 (2), 163-172 (1960).
9.  E. A. Marshall, "The Compression of a Slab of Ideal Soil between Rough Plates," Acta Mech. 3 (2), 82-92 (1967)
10.  L. A. Maksimova, "On a Statically Indeterminate State of a Perfectly Plastic Layer Compressed between Rough Rigid Surfaces," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 98-103 (2005) [Mech. Solids (Engl. Transl.) 40 (2), 80-85 (2005)].
11.  I. P. Grigoriev, "On Compression of a Plane Ideal Plastic Layer with Regard to Gravity Forces," Vestnik Yakovlev ChGPU, Ser. Mekhanika Predelnogo Sostoyaniya, No. 6, 130-133 (2009).
12.  E. E. Kuznetsov, I. N. Matchenko, and N. M. Matchenko, "Compression of an Ideally Plastic Orthotropic Layer," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., No. 8, 280-287 (2010).
13.  D. V. Georgievskii, "Asymptotic Expansions and the Possibilities to Drop the Hypotheses in the Prandtl Problem," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 83-93 (2009) [Mech. Solids (Engl. Transl.) 44 (1), 70-78 (2009)].
14.  D. V. Georgievskii, "Saint-Venant Flow in a Thin Layer under Plastic Compression," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 104-115 (2011) [Mech. Solids (Engl. Transl.) 46 (4), 579-588 (2011)].
15.  G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity (Dal'nauka, Vladivostok, 1998) [in Russian].
Received 29 May 2016
Link to Fulltext
<< Previous article | Volume 52, Issue 6 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100