Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-1pp.95-110

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
T.I. Belyankova and V.V. Kalinchuk, "On the Modeling of a Prestressed Thermoelectroelastic Half-Space with a Coating," Mech. Solids. 52 (1), 95-110 (2017)
Year 2017 Volume 52 Number 1 Pages 95-110
DOI 10.3103/S0025654417010113
Title On the Modeling of a Prestressed Thermoelectroelastic Half-Space with a Coating
Author(s) T.I. Belyankova (Southern Scientific Center of the Russian Academy of Sciences, ul. Chekhova 41, Rostov-on-Don, 344006 Russia)
V.V. Kalinchuk (Southern Scientific Center of the Russian Academy of Sciences, ul. Chekhova 41, Rostov-on-Don, 344006 Russia, kalin@ssc-ras.ru)
Abstract The constitutive equations of nonlinear mechanics of a prestressed electrothermoelastic continuum are linearized in the framework of the theory of small strains imposed on finite strains. Simple and convenient-to-operate formulas of linearized constitutive equations and equations of motion of the medium are obtained. A model of electrothermoelastic half-space with inhomogeneous coating, which is a structure of functionally graded layers, is proposed. It is assumed that each of the medium components is under the action of initial mechanical strains and initial temperature, and the materials of the medium components are orthotropic pyroelectric materials of hexagonal crystal system of class 6 mm. The integral representation of the medium wave field is constructed by a hybrid numerical-analytical method based on a combination of analytical solutions and numerical schemes used to reconstruct the Green function for the inhomogeneous components of the coating and the matrix approach used to satisfy the boundary conditions.
Keywords electrothermoelasticity, functionally graded material, prestressed electrothermoelastic medium with coating, linearization, initial stresses, initial temperature actions, preheating, three-dimensional Green function
References
1.  I. V. Anan'ev and V. A. Babeshko, "Punch Oscillations on a Layer with Depth-Depending Characteristics," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 64-69 (1978) [Mech. Solids (Engl. Transl.)].
2.  I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of Elasticity for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].
3.  I. V. Anan'ev, V. V. Kalinchuk, and I. B. Poliakova, "On Wave Excitation by a Vibrating Stamp in a Medium with Inhomogeneous Initial Stresses," Prikl. Mat. Mekh. 47 (3), 483-489 (1983) [J. Appl. Math. Mech. (Engl. Transl.) 47 (3), 408-413 (1983)].
4.  V. A. Babeshko, E. V. Glushkov, and Zh. F. Zinchenko, Dynamics of Inhomogeneous Linearly Elastic Media (Nauka, Moscow, 1989) [in Russian].
5.  V. V. Kalinchuk, I. V. Lysenko, and I. B. Polyakova, "Singularities of the Interaction of a Vibrating Stamp with an Inhomogeneous Heavy Base," Prikl. Mat. Mekh. 53 (2), 301-308 (1989) [J. Appl. Math. Mech. (Engl. Transl.) 53 (2), 235-241 (1989)].
6.  X. Cao, F. Jin, and I. Jean, "Calculation of Propagation Properties of Lamb Waves in a Functionally Graded Material (FGM) Plate by Power Series Technique," NDT&E Int. 44, 84-92 (2011).
7.  G. R. Liu, K. Y. Dai, X. Han, and T. Ohyoshi, "Dispersion and Characteristics of Waves in Functionally Graded Piezoelectric Plates," J. Sound Vibr. 268, 131-147 (2003).
8.  J. Du, X. Jin, J. Wang, and K. Xian, "Love Wave Propagation in Functionally Graded Piezoelectric Material Layer," Ultrasonics 46, 13-22 (2007).
9.  Z.-H. Qian, F. Jin, T. Lu, and K. Kishimoto, "Transverse Surface Waves in a Layered Structure with a Functionally Graded Piezoelectric Substrate and a Hard Dielectric Layer," Ultrasonics 49, 283-297 (2009).
10.  B. Collet, M. Destrade, and G. A. Maugin, "Bleustein-Gulyaev Waves in Some Functionally Graded Materials," Europ. J. Mech. A. Solids 25 (5), 695-706 (2006).
11.  G. N. Praveen and J. N. Reddy, "Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates," Int. J. Solids Struct. 35, 4457-4476 (1998).
12.  Y. Obata and N. Nosa, "Optimum Material Design for Functionally Gradient Material Plate," Arch. Appl. Mech. 66, 581-589 (1996).
13.  J. N. Reddy, "Analysis of Functionally Graded Plates," Int. J. Numer. Mech. Engng 47, 663-684 (2000).
14.  J. N. Reddy and R. A. Arciniega, "Free Vibration Analysis of Functionally Graded Ceramic-Metal Plates," in Analysis and Design of Plated Structures, Vol. 2: Dynamics (Springer, New York, 2006), pp. 293-321.
15.  J. N. Reddy and R. A. Arciniega, "Mechanical and Thermal Buckling of Functionally Graded Ceramic-Metal Plates," in Analysis and Design of Plated Structures, Vol. 1: Stability (Springer, New York, 2006).
16.  R. D. Mindlin, "On the Equations of Motion of Piezoelectric Crystals," in Problems of Continuum Mechanics (SIAM, Philadelphia, 1961), pp. 282-290.
17.  R. D. Mindlin, "Equations of High Frequency Vibrations of Thermo-Piezoelectric Plate," Int. J. Solids Struct. 10, 625-637 (1974).
18.  W. Nowacki, "Some General Theorems of Thermo-Piezoelectricity," J. Thermal Stresses 1 (2), 171-182 (1978).
19.  W. Nowacki, "Foundations of Linear Piezoelectricity," in Electromagnetic Interaction in Elastic Solids, Chapter 1 (Springer, New York, 1979).
20.  D. S. Chandrasekharaiah, "A Temperature Rate Dependent Theory of Thermo-Piezoelectricity," J. Thermal Stresses 7, 293-306 (1984).
21.  D. S. Chandrasekharaiah, "A Generalized Linear Thermoelasticity Theory of Piezoelectric Media," Acta Mech. 71, 39-49 (1988).
22.  J. N. Sharma and M. Pal, "Propagation of Lamb Waves in a Transversely Isotropic Piezothermoelastic Plate," J. Sound Vibr. 270, 587-610 (2004).
23.  J. N. Sharma, M. Pal, and D. Chand, "Propagation Characteristics of Rayleigh Waves in Transversely Isotropic Piezothermoelastic Materials," J. Sound Vibr. 284, 227-248 (2005).
24.  J. N. Sharma and V. Walia, "Effect of Rotation on Rayleigh Waves in Piezothermoelastic Half-Space," Int. J. Solids Struct. 44, 1060-1072 (2007).
25.  T. I. Belyankova, V. V. Kalinchuk, and G. Yu. Suvorova, "A Dynamic Contact Problem for a Thermoelastic Prestressed Layer," Prikl. Mat. Mekh. 76 (5), 811-822 (2012) [J. Appl. Math. Mech. (Engl. Transl.) 76 (5), 537-546 (2012)].
26.  V. V. Kalinchuk, G. Yu. Suvorova, and T. I. Belyankova, "Green Functions of a Thermoelastic Prestresses Layer," Vestnik Yuzhn. Nauchn. Tsentra RAN 8 (3), 14-21 (2012).
27.  T. I. Belyankova, V. V. Kalinchuk, and D. N. Sheidakov, "Equations of Dynamics of Prestressed Electrothermoelastic Medium," Vestnik Yuzhn. Nauchn. Tsentra RAN 7 (2), 3-10 (2011).
28.  V. V. Kalinchuk and T. I. Belyankova, "On Dynamics of a Medium with Properties Continuously Varying in Depth," Izv. Vyssh. Uchebn. Zaved. Sev.-Kav. Region. Estest. Nauki. Special issue, 46-49 (2004).
29.  V. V. Kalinchuk and T. I. Belyankova, Dynamics of the Surface of Inhomogeneous Media (Fizmatgiz, Moscow, 2009) [in Russian].
30.  N. F. Tiersten, "On the Nonlinear Equations of Thermoelectroelasticity," Int. J. Engng Sci. 9, 587-604 (1971).
31.  A. I. Lur'ie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
32.  G. A. Maugin and A. Berezovski, "Material Formulation of Finite-Strain Thermoelasticity and Applications," J. Thermal Stresses 22, 421 (2000).
33.  V. V. Kalinchuk and T. I. Belyankova, Dynamic Contact Problems for Prestressed Electroelastic Media (Fizmatgiz, Moscow, 2006) [in Russian].
34.  J. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon, Oxford, 1957; Mir, Moscow, 1967).
35.  V. A. Babeshko, O. M. Babeshko, and O. V. Evdokimova, "On the Problem of Estimating the State of Coated Materials," Dokl. Ross. Akad. Nauk 409 (4), 481-485 (2006) [Dokl. Phys. (Engl. Transl.) 51 (8), 423-428 (2006)].
36.  V. A. Babeshko, S. V. Ratner, and P. V. Syromyatnikov, "On Mixed Problems for Thermoelectroelastic Media with Discontinuous Boundary Conditions," Dokl. Ross. Akad. Nauk 412 (6), 753-758 (2007) [Dokl. Phys. (Engl. Transl.) 52 (2), 90-95 (2007)].
37.  V. A. Babeshko, S. V. Ratner, and P. V. Syromyatnikov, "On Mixed Problems for Multilayer Anisotropic Composites," Vestnik Yuzhn. Nauchn. Tsentra RAN 2 (4), 5-11 (2006).
38.  V. A. Babeshko, O. M. Babeshko, and O. V. Evdokimova, "Addressing the Problem of Investigating Coated Materials," Dokl. Ross. Akad. Nauk 410 (1), 49-52 (2006) [Dokl. Phys. (Engl. Transl.) 51 (9), 509-512 (2006)].
Received 26 November 2014
Link to Fulltext
<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100