Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-1pp.111-117

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
B.A. Zhukov, "Plane Stress-Strain State of a Circular Cylindrical Bushing due to a Finite Out-of-Plane Shear," Mech. Solids. 52 (1), 111-117 (2017)
Year 2017 Volume 52 Number 1 Pages 111-117
DOI 10.3103/S0025654417010125
Title Plane Stress-Strain State of a Circular Cylindrical Bushing due to a Finite Out-of-Plane Shear
Author(s) B.A. Zhukov (Volgograd State Technical University, pr. Lenina 28, Volgograd, 400131 Russia, zhukov.b.a@gmail.com)
Abstract The paper deals with the determination of the stress-strain state due to a finite longitudinal shear in a circular cylindrical bushing manufactured from the Mooney-Rivlin material. Some expressions for the internal stresses and displacements in the plane perpendicular to the longitudinal shear are obtained.
Keywords finite strains, hyperelasticity, incompressibility, longitudinal shear
References
1.  A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics (Clarendon, Oxford, 1960; Mir, Moscow, 1965).
2.  J. K. Knowies, "On Finite Anti-Plane Charge for Incompressible Elastic Materials," J. Austral. Math. 19 (4), 400-415 (1976).
3.  L. M. Zubov, "On Reduction of Several Spatial Problems of Nonlinear Elasticity to Two-Dimensional Boundary Value Problems," in Contemporary Problems of Continuum Mechanics. Proc. 5th Intern. Conf., Rostov-on-Don, 1999, Vol. 1 (Rostov Gos. Univ., NII Mekh. Prikl. Mat., Rostov-on-Don, 2000) pp. 83-87 [in Russian].
4.  D. A. Polignone and C. O. Horgan, "Pure Torsion of Compressible Nonlinearly Elastic Circular Cylinders," Quart. Appl. Math. 49, 591-607 (1991).
5.  R. De Pascalis, M. Destrade, and G. Saccomandi, "The Stress Field in a Pulled Cork and Some Subtle Points in the Semi-Inverse Method of Nonlinear Elasticity," Proc. R. Soc. A 463 (2087), 2945-2959 (2007).
6.  E. I. Grigolyuk and P. Ya. Nosatenko, "Plane Geometrically Nonlinear stress-strain state of a Cylinder in Shear," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 2, 28-31 (1986).
7.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
8.  K. F. Chernykh and I. M. Shubina, "Elasticity Laws for Isotropic Incompressible Materials. A Phenomenological Approach," Mekh. Elastomerov (Krasnodar) 1 (242), 54-64 (1977).
9.  D. P. Bokin, S. A. Korostelev, and K. S. Nechaev, "Determination of the Fracture Initiation Domain for Rubber Elements of Rubber-Metal Hinge of the Caterpillar Mover," Vestnik Altaisk. Gos. Agrarn. Univ., No. 7 (57), 61-65 (2009).
Received 02 June 2014
Link to Fulltext
<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100