Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-5pp.479-487

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
V.V. Vasil'ev and S.A. Lurie, "New Solution of Axisymmetric Contact Problem of Elasticity," Mech. Solids. 52 (5), 479-487 (2017)
Year 2017 Volume 52 Number 5 Pages 479-487
DOI 10.3103/S0025654417050028
Title New Solution of Axisymmetric Contact Problem of Elasticity
Author(s) V.V. Vasil'ev (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, vvvas@dol.ru)
S.A. Lurie (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; Institute of Applied Mechanics of the Russian Academy of Sciences, Leningradskii pr. 7, Moscow, 125040 Russia)
Abstract We consider two problems of elasticity, namely, the Boussinesq problem about the action of a lumped force on a half-space and the related problem about the interaction of the half-space with a cylindrical rigid punch with plane base. In the classical statement, these problems have singular solutions. In the Boussinesq problem, the displacement under the action of the force is infinitely large, and in the punch problem, the infinitely large variable is the pressure on the punch boundary. In the present paper, these problems are solved with the use of relations of generalized elasticity derived regarding a medium element of small but finite dimensions rather than a traditional infinitesimal element. The structure parameter of the medium contained in the solutions can be determined experimentally. The obtained generalized solutions of the problems under study are regular.
Keywords theory of elasticity, Boussinesq problem, punch problem
References
1.  B. N. Zhemochkin, Theory of Elasticity (Stroivoenmorizdat, Moscow, 1948) [in Russian].
2.  A. I. Lurie, Spatial Problems of Theory of Elasticity (GITTL, Moscow, 1955) [in Russian].
3.  V. V. Vasiliev and S. A. Lurie, "Model of a Solid with Microstructure," Kompoz. Nanostrukt. 7 (1), 25-33 (2015).
4.  V. V. Vasil'ev and S. A. Lurie, "Generalized Theory of Elasticity," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 16-27 (2015) [Mech. Solids (Engl. Transl.) 50 (4), 379-388 (2015)].
5.  V. V. Vasil'ev and S. A. Lurie, "Generalized Solution of the Problem of a Circular Membrane Loaded by a Lumped Force," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 115-119 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 334-338 (2016)].
6.  V. V. Vasil'ev and S. A. Lurie, "New Solution of the Plane Problem for an Equilibrium Crack," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 61-67 (2016) [Mech. Solids (Engl. Transl.) 51 (5), 557-561 (2016)].
7.  M. Abramowitz and I. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Gov. Print off., Wasgington, 1964; Nauka, Moscow, 1979).
Received 10 January 2017
Link to Fulltext
<< Previous article | Volume 52, Issue 5 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100