Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-5pp.583-587

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
A.K. Abramyan, S.A. Vakulenko, and D.A. Indeitsev, "Localized Waves in a String of Infinite Length Lying on a Damaged Elastic Base under Finitely Many Impacts," Mech. Solids. 51 (5), 583-587 (2016)
Year 2016 Volume 51 Number 5 Pages 583-587
DOI 10.3103/S0025654416050113
Title Localized Waves in a String of Infinite Length Lying on a Damaged Elastic Base under Finitely Many Impacts
Author(s) A.K. Abramyan (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr. 61, V.O., St. Petersburg, 199178 Russia, andabr55@gmail.com)
S.A. Vakulenko (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr. 61, V.O., St. Petersburg, 199178 Russia; ITMO University, Kronverkskiy pr. 49, St. Petersburg, 197101 Russia)
D.A. Indeitsev (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr. 61, V.O., St. Petersburg, 199178 Russia)
Abstract Asymptotic solutions of the problem of dynamics of an infinitely long string lying on an elastic base with prescribed damage under the action of finitely many periodic impacts are constructed in the two cases of small and large damage of the elastic base. The condition of resonance origination in the string is obtained in the case of small damage when the standing wave is localized in the region of damage. At the final stage of the damage growth in the elastic base, when its value is close to the critical one, the localized mode and the resonance are absent, and only a traveling wave exists in the string.
Keywords wave localization, impact, string, resonance, damage
References
1.  I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of Elasticity for Nonclassical Domains (Nauka, Moscow, 1978) [in Russian].
2.  V. A. Babeshko, E. V. Glushkov, Zh. V. Zinchenko, Dynamics of Inhomogeneous Linearly Elastic Media (Nauka, Moscow, 1989) [in Russian].
3.  V. A. Babeshko, I. I. Vorovich, and I. G. Obraztsov, "High-Frequency Resonance in Semibounded Bodies with Inclusions," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 74-84 (1992) [Mech. Solids (Engl. Transl.)].
4.  V. A. Babeshko, Generalized Factorization Method in Spatial Dynamic Problems of Elasticity (Nauka, Moscow, 1984) [in Russian].
5.  A. K. Abramyan, D. A. Indeitsev, S. A. Vakulenko, and B. N. Semenov, "Influence of Dynamic Processes in a Film on Damage Development in an Adhesive Base," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 14-21 (2012) [Mech. Solids (Engl. Transl.) 47 (5), 498-504 (2012)].
6.  D. A. Indeitzev, A. K. Abramyan, N. M. Bessonov, et al., "Motion of the Exfoliation Boundary During Localization of Wave Processes," Dokl. Ross. Akad. Nauk 443 (6), 682-686 (2012) [Dokl. Phys. (Engl. Transl.) 57 (4), 179-182 (2012)].
7.  A. K. Abramyan, S.A. Vakulenko, D. A. Indeitsev, and N. M. Bessonov, "Destruction of Thin Films with a Damaged Substrate as a Result of Wave Localization," Acta Mech. 226 (2), 295-309 (2014).
8.  G. P. Cherepanov, Mechanics of Fracture of Composite Materials (Nauka, Moscow, 1983) [in Russian].
9.  V. V. Bolotin, "Interply Failure of Composites in Combined Loading," Mekh. Komp. Mater., No. 3, 410-418 (1988) [Mech. Comp. Mater. (Engl. Transl.) 24 (3), 295-303 (1988)].
10.  V. V. Bolotin and V. N. Shchugorev, "Effect of Low-Velocity Impact on the Residual Strength of Composites," Mekh. Komp. Mater. 29 (4), 478-487 (1993) [Mech. Comp. Mater. (Engl. Transl.) 29 (4), 357-364 (1993)].
11.  S. P. Joshi and C. T. Sun, "Impact Induced Fracture in a Laminated Composite," J. Comp. Mater. 19 (1), 51-66 (1985).
12.  M. G. Andrews, R. Massab, A. Cavicchi, and B. N. Cox, "Dynamic Interaction Effects of Multiple Delamination in Plates subject to Cylindrical Bending," Int. J. Solids Struct. 46, 1815-1833 (2009).
13.  R. V. Goldstein, K. B. Ustinov, and A. V. Chentsov, "Estimation of the Influence of the Substrate Compliance on the Stability Loss Stresses of the Spalled Covering," Vych. Mekh. Sploshn. Sred 4 (3), 48-57 (2011).
14.  K. B. Ustinov, "On Separation of a Layer from the Half-Plane: Elastic Fixation Conditions for a Plate Equivalent to the Layer," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 75-95 (2015) [Mech. Solids (Engl. Transl.) 50 (1), 62-80 (2015)].
15.  Y. V. Petrov and N. F. Morozov, "On the Modeling of Fracture of Brittle Solids," Trans. ASME. J. Appl. Mech. 61, 710-712 (1994).
Received 26 April 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100