Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-5pp.557-561

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
V.V. Vasil'ev and S.A. Lurie, "New Solution of the Plane Problem for an Equilibrium Crack," Mech. Solids. 51 (5), 557-561 (2016)
Year 2016 Volume 51 Number 5 Pages 557-561
DOI 10.3103/S0025654416050071
Title New Solution of the Plane Problem for an Equilibrium Crack
Author(s) V.V. Vasil'ev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, vvvas@dol.ru)
S.A. Lurie (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; Institute of Applied Mechanics, Russian Academy of Sciences, Leningradskii pr. 7, Moscow, 125040 Russia)
Abstract We consider the classical plane problem of elasticity about a crack in an isotropic elastic unbounded plane resulting in a singular solution for the stresses near the crack edge. Relations of generalized elasticity with a small parameter characterizing the medium microstructure are derived, and the higher order of these relations permits eliminating the singularity of the classical solution. An experimental method for determining the medium parameter is proposed, and the corresponding experimental results are given.
Keywords theory of elasticity, nonclassical theory of elasticity, crack problem
References
1.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1979) [in Russian].
2.  E. Liebowitz (Editor), Fracture, Vol. 2: Mathematical Fundamentals (Academic Press, New York-London, 1968; Mir, Moscow, 1975).
3.  V. V. Vasil'ev and S. A. Lurie, "Model of a Solid with Microstructure," Kompos. Nanostr. 7 (1), 2-10 (2015).
4.  V. V. Vasil'ev and S. A. Lurie, "Generalized Theory of Elasticity," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 16-27 (2015) [Mech. Solids (Engl. Transl.) 50 (4), 379-388 (2015)].
5.  V. V. Vasil'ev and S. A. Lurie, "Generalized Solution of the Problem of a Circular Membrane Loaded by a Concentrated Force," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 115-119 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 334-338 (2016)].
Received 07 June 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100