Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-5pp.522-526

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
V.I. Karev, D.M. Klimov, Yu.F. Kovalenko, and K.B. Ustinov, "Fracture of Sedimentary Rocks under a Complex Triaxial Stress State," Mech. Solids. 51 (5), 522-526 (2016)
Year 2016 Volume 51 Number 5 Pages 522-526
DOI 10.3103/S0025654416050022
Title Fracture of Sedimentary Rocks under a Complex Triaxial Stress State
Author(s) V.I. Karev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, wikarev@ipmnet.ru)
D.M. Klimov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, klimov@ipmnet.ru)
Yu.F. Kovalenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, perfolinkgeo@yandex.ru)
K.B. Ustinov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, ustinov@ipmnet.ru)
Abstract Most sedimentary rocks have layered structure, and their strength properties are therefore anisotropic; as a consequence, the rock strength depends on the direction of the applied stresses. In this case, various fracture mechanisms are possible. The following two possible fracture mechanisms are considered: actions along the bedding planes, which are weakening surfaces, and along the planes where stresses exceeding the total rock strength are attained. A triaxial independent loading test bench was used to study the fracture conditions for layered rocks composed of productive oil-and-gas strata in complex true triaxial loading tests. The study shows a good qualitative agreement between experimental results and theoretical estimates.
Keywords rock, anisotropic strength, true triaxial loading test
References
1.  A. I. Spivak and A. N. Popov, Rock Fracture in Well Drilling (Nedra, Moscow, 1994) [in Russian].
2.  K. M. Tagirov and V. I. Nifontov, Well Drilling and Oil-and-Gas Formation Exposing in Depression (Nedra, Moscow, 2003) [in Russian].
3.  Yu. A. Kashnikov, S. G. Ashikhman, D. V. Shustov, and S. E. Chernyshov, "Estimation of the Well Wall Stability without Reliable Information about the Geomechanical Characteristics of Rocks," Neft. Khoz., No. 1, 41-43 (2015).
4.  V. I. Karev and Yu. F. Kovalenko, "Triaxial Loading System as a Tool for Solving Geotechnical Problems of Oil and Gas Production," in True Triaxial Testing of Rocks. Ser. Geomechanics Research Series (CRC Press/Balkema, Leiden, 2013), pp. 301-310.
5.  D. M. Klimov, V. I. Karev, Yu. F. Kovalenko, and K. B. Ustinov, "Mechanical-Mathematical and Experimental Modeling of Well Stability in Anisotropic Media," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 4-12 (2013) [Mech. Solids (Engl. Transl.) 48 (4), 357-363 (2013)].
6.  D. M. Klimov, V. I. Karev, Yu. F. Kovalenko, and K. B. Ustinov, "Mathematical and Physical Modeling of Rock Fracture in Slanted Well Drilling," Tekhnolog. TEK, No. 5, 22-27 (2006).
7.  M. Singh, N. K. Samadhiya, A. Kumar, et al., "A Nonlinear Criterion for Triaxial Strength of Inherently Anisotropic Rocks," Rock Mech. Rock. Engng 48 (4), 1387-1405 (2015).
8.  K. Mogi, "Fracture and Flow of Rocks under High Triaxial Compression," J. Geophys. Res., No. 76, 1255-1269 (1971).
9.  E. Hoek and E. T. Brown, "Practical Estimates of Rock Mass Strength," Int. J. Rock Mech. Min. Sci. 34 (8), 1165-1186 (1997).
10.  N. Barton, "The Shear Strength of Rock and Rock Joints," Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13 (9), 255-279 (1976).
11.  R. E. Goodman, Introduction to Rocks Mechanics (Wiley, New York, 1980).
12.  N. Barton, A Model Study of Behavior of Steep Excavated Rock Slopes, PhD Thesis (Univ. London, 1971).
13.  N. Barton, "From Empiricism, through Theory, to Problem Solving in Rock Mechanics. Harmonizing Rock Engineering and the Environment," in Proceedings of the 12th ISRM International Congress on Rock Mechanics Ed. by Qihi Qian and Yingxin Zhou (Beijing, China, 2011), pp. 3-17.
14.  L. M. Kachanov, Foundations of the Theory of Plasticity (North-Holland, Amsterdam-London, 1971).
15.  C. A. Coulomb, "Essai sur une application des règles des maximiset minimis à quelques problèms de statique relatifs, à l'architecture," Mem. Acad. Roy. 7, 343-387 (1776).
16.  D. C. Drucker and W. Prager, "Soil Mechanics and Plastic Analysis for Limit Design," Quart. Appl. Math. 10 (2), 157-165 (1952).
Received 26 May 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100