Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-3pp.273-283

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
A.S. Ivanov, V.P. Matvienko, D.A. Oshmarin, N.V. Sevodina, M.A. Yurlov, and N.A. Yurlova, "Justification of Equivalent Substitution Circuits Used to Optimize the Dissipative Properties of Electroelastic Bodies with External Electric Circuits," Mech. Solids. 51 (3), 273-283 (2016)
Year 2016 Volume 51 Number 3 Pages 273-283
DOI 10.3103/S0025654416030043
Title Justification of Equivalent Substitution Circuits Used to Optimize the Dissipative Properties of Electroelastic Bodies with External Electric Circuits
Author(s) A.S. Ivanov (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, leshichiy@icmm.ru)
V.P. Matvienko (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, mvp@icmm.ru)
D.A. Oshmarin (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, oshmarin@icmm.ru)
N.V. Sevodina (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, natsev@icmm.ru)
M.A. Yurlov (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, yurlovm@icmm.ru)
N.A. Yurlova (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, yurlova@icmm.ru)
Abstract We consider elastoplastic systems which are piecewise homogeneous bodies composed of piezoelectric elements some of which have piezoelectrical properties. Electric series circuits consisting of resistors, capacitors, and inductance coils are applied to piezoelectric elements through the electrode coating on the body surface. The goal of the study is to develop efficient methods of mathematical modelling for determining the parameters of elements of the external electric circuit, which ensure, at prescribed resonance frequencies, the maximum damping properties of electroelastic bodies with external electric circuits. To choose effective circuits for solving the problem posed above, we suggest to pose the problem of natural vibrations of elastic bodies whose elements exhibit piezoeffect and have external electric circuits. As the most efficient approaches for calculating the electric circuit parameters necessary for the maximal damping, we propose some versions of equivalent circuits, which can be used to substitute elastic systems with piezoelectric elements. The most reliable equivalent substitution circuits are justified on the basis of the proposed problem of natural vibrations. Numerical results are obtained for a cantilever plate with a piezoelement connected through the electrode coated surface with a series electric circuit consisting of resistors, capacitors and inductance coils.
Keywords elastic systems with piezoelements, external electric circuits, natural vibrations, equivalent substitution circuits
References
1.  R. L. Forward, "Electronic Damping of Vibrations in Optical Structures," J. Appl. Optics 18 (5), 690-697 (1979).
2.  N. Hagood and A. von Flotow, "Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks," J. Sound Vibr. 146 (2), 243-268 (1991).
3.  F. A. C. Viana and V. Steffen, Jr., "Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits," J. Braz. Soc. Mech. Sci. Engng XXVIII (3), 293-310 (2006).
4.  H. A. Sodano, Macro-Fiber Composites for Sensing, Actuation, and Power Generation, PhD Thesis (Blackburg, Virginia, 2003).
5.  G. Kawiecki and S. Jesse, "Rosette Piezotransducers for Damage Detection," Smart Mater. Struct., No. 11, 196-201 (2002).
6.  S. Y. Wu, "Piezoelectric Shunts with Parallel R-L Circuit for Structural Damping and Vibration Control," Proc. SPIE2720, Smart Structures and Materials 1996: Passive Damping and Isolation 2720, 259-269 (1996).
7.  M. C. Elvin and A. A. Elvin, "The Flutter Response of a Piezoelectrically Damped Cantilever Pipe," J. Intell. Mater. Syst. Struct. 20, 2017-2026 (2009).
8.  J. Mackerie, "Smart Materials and Structures - a Finite Element Approach: A Bibliography (1986-1997)," Modelling Simul. Mater. Sci. Engng, No. 6, 293-334 (1998).
9.  J. Mackerie, "Smart Materials and Structures - a Finite Element Approach - an Addendum: A Bibliography (1997-2002)," Modelling Simul. Mater. Sci. Engng, No. 11, 707-744 (2003).
10.  K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon Press, Oxford-New York, 1982; Mir, Moscow, 1987).
11.  V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electrically Conducting Bodies (Nauka, Moscow, 1988) [in Russian].
12.  V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity (Naukova Dumka, Kiev, 1988).
13.  V. P. Matvienko, E. P. Kligman, M. A. Yurlov, and N. A. Yurlova, "Modeling and Optimization of Dynamic Characteristics of Smart Structures with Piezomaterials," Fiz. Mezomekh. 15 (1), 75-85 (2012).
14.  A. Nashif, D. Jones, and J. Henderson, Vibration Damping (Wiley, New York, 1985; Mir, Moscow, 1988).
15.  A. J. Agneni, F. Mastroddi, and G. M. Polli, "Shunted Piezoelectric Patches in Elastic and Aeroelastic Vibrations," Comput. Struct. 81 (2), 91-105 (2003).
16.  A. J. Fleming, S. Behrens, and S. O. R. Moheimani, "Reducing the Inductance Requirements of Piezoelectric Shunt Damping Systems," Smart. Mater. Struct., No. 12, 57-64 (2003).
17.  O. Thomas, J. Ducarne, and J.-F. Deu, "Performance of Piezoelectric Shunts for Vibration Reduction," Smart. Mater. Struct. 21 (1), 015008 (2012).
18.  G. Caruso, "A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping," Smart. Mater. Struct., No. 10, 1059-1068 (2001).
19.  A. V. Khokhlov, Theoretical Foundations of Radioelectronics (Izdat. Saratov Univ., Saratov, 2005) [in Russian].
20.  V. Dyke, "The Electric Network Equivalent of a Piezoelectric Resonator," Phys. Review 25 (2), 895A (1925).
21.  C. H. Park, "On the Circuit Model of Piezoceramics," J. Intell. Mater. Syst. Struct. 12, 515-522 (2001).
22.  S. Sherrit, H. D. Wiederick, B. K. Mukherjee, and M. Sayer, "An Accurate Equivalent Circuit for the Unloaded Piezoelectric Vibrator in the Thickness Mode," J. Phys. D. Appl. Phys. 30 (16), 2354-2363 (1997).
23.  J. Kim, B. L. Grisso, J. K. Kim, et al., "Electrical Modelling of Piezoelectric Ceramics for Analysis and Evaluation of Sensory Systems," in SAS 2008 - IEEE Sensors Applications Symposium, Atlanta, GA, February 12-14, 2008 (Atlanta, 2008) pp. 122-127.
Received 11 May 2015
Link to Fulltext
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100