| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >> |
A.K. Belyaev, N.F. Morozov, P.E. Tovstik, and T.P. Tovstik, "Buckling Problem for a Rod Longitudinally Compressed by a Force Smaller Than the Euler Critical Force," Mech. Solids. 51 (3), 263-272 (2016) |
Year |
2016 |
Volume |
51 |
Number |
3 |
Pages |
263-272 |
DOI |
10.3103/S0025654416030031 |
Title |
Buckling Problem for a Rod Longitudinally Compressed by a Force Smaller Than the Euler Critical Force |
Author(s) |
A.K. Belyaev (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia, vice.ipme@gmail.ru)
N.F. Morozov (Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, morozov@nm1016.spb.edu)
P.E. Tovstik (Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, peter.tovstik@mail.ru)
T.P. Tovstik (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia, tovstik_t@mail.ru) |
Abstract |
It was earlier shown that a rod can buckle under the action of a sudden longitudinal load smaller than the Euler critical load. The buckling mechanism is related to excitation of periodic longitudinal waves generated in the rod by the sudden loading, which in turn lead to transverse parametric resonances. In the linear approximation, the transverse vibration amplitude increases unboundedly, and in the geometrically nonlinear approach, beats with energy exchange from longitudinal to transverse vibrations and back can arise. In this case, the transverse vibration amplitude can be significant. In the present paper, we study how this amplitude responds to the following two factors: the smoothness of application of the longitudinal force and the internal friction forces in the rod material. |
Keywords |
rod, longitudinal impact, lateral bending, parametric resonance |
References |
1. | L. Euler,
Method for Determining Curves with the Maximum or
Minimum Property
GTTI, Moscow-Leningrad, 1934)
[in Russian]. |
2. | Ya. G. Panovko and I. I. Gubanova,
Stability and Vibrations of Elastic Systems
(Nauka, Moscow, 1987)
[in Russian]. |
3. | M. A. Lavrentiev and A. Yu. Ishlinskii, "Dynamic Buckling Modes
of Elastic Systems," Dokl. Akad. Nauk SSSR
64 (6),
776-782 (1949). |
4. | A. S. Volmir,
"Stability of Compressed Rods under Dynamic Loading,"
Stroit. Mekh. Rashch. Sooruzh.,
No. 1, 6-9 (1960). |
5. | V. V. Bolotin,
Transverse Vibrations and Critical Velocities,
Vols. 1 and 2
(Izdat. AN SSSR, Moscow, 1951, 1953)
[in Russian]. |
6. | N. F. Morozov and P. E. Tovstik,
"Dynamics of a Rod on Longitudinal Impact,"
Vestnik St. Peterzburg. Univ. Ser. I. Mat. Mekh. Astr.
No. 2, 105-111 (2009). |
7. | A. K. Belyaev, D. N. Il'in, and N. F. Morozov "Dynamic Approach to
the Ishlinsky-Lavrent'ev Problem,"
Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 28-33 (2013)
[Mech. Solids (Engl. Transl.)
48 (5), 504-508 (2013)]. |
8. | N. F. Morozov and P. E. Tovstik,
"Dynamics of a Rod on Short-Time Longitudinal Impact,"
Vestnik St. Peterzburg. Univ. Ser. I. Mat. Mekh. Astr.
No. 3, 131-141 (2013). |
9. | N. F. Morozov and P. E. Tovstik,
"Transverse Rod Vibrations under a Short-Term Longitudinal Impact,"
Dokl. Ross. Akad. Nauk
452 (1), 37-41 (2013)
[Dokl. Phys. (Engl. Transl.)
58 (9), 387-391 (2013)]. |
10. | N. F. Morozov, P. E. Tovstik, and T. P. Tovstik,
"Statics and Dynamics of a Rod under Longitudinal Loading,"
Vestnik Yuzhno-Ural Univ. Ser. Mat. Model. Progr.
7 (1), 76-89 (2014). |
11. | N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, "More on the
Ishlinskii-Lavrentyev Problem," Dokl. Ross. Akad. Nauk
455 (4), 412-415 (2014) [Dokl. Phys. (Engl. Transl.)
59 (4), 189-192 (2014)]. |
12. | N. F. Morozov and P. E. Tovstik, "Dynamic Buckling of a Rod under
Longitudinal Load Lower Than the Eulerian Load,"
Dokl. Ross. Akad. Nauk 453 (3), 282-285 (2014)
[Dokl. Phys. (Engl. Transl.) 58 (11), 510-513 (2013)]. |
13. | A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik
"Beating in the Problem of Longitudinal Impact on a Thin Rod,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 4, 104-117 (2015)
[Mech. Solids (Engl. Transl.)
50 (4), 451-462 (2015)]. |
14. | V. A. Palmov,
Vibrations of Elastoplastic Bodies
(Nauka, Moscow, 1976)
[in Russian]. |
15. | A. M. Lyapunov,
General Problem of Stability of Motion
(GosTekhIzdat., Moscow, 1950)
[in Russian]. |
16. | V. A. Yakubovich and V. M. Starzhinskii,
Linear Differential Equations with Periodic Coefficients
and Their Applications
(Nauka, Moscow, 1972)
[in Russian]. |
17. | T. Hayashi,
Forced Vibrations in Nonlinear Systems
(Izdat. Inostr. Lit., Moscow, 1964)
[in Russian]. |
18. | N. N. Bogolyubov and Yu. A. Mitropolskii,
Asymptotic Methods in Theory of Nonlinear Vibrations
(Nauka, Moscow, 1969)
[in Russian]. |
|
Received |
11 October 2015 |
Link to Fulltext |
|
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|