Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-2pp.216-222

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
V.N. Voronkov, "Method for Determining the Coupling Parameters for Complex Linear Systems with Discrete Couplings between Subsystems," Mech. Solids. 51 (2), 216-222 (2016)
Year 2016 Volume 51 Number 2 Pages 216-222
DOI 10.3103/S0025654416020096
Title Method for Determining the Coupling Parameters for Complex Linear Systems with Discrete Couplings between Subsystems
Author(s) V.N. Voronkov (Central Scientific Research Institute for Engineering (TsNIIMash), ul. Pionerskaya 4, Korolev, Moscow Oblast, 141070 Russia, vnvoron@mail.ru)
Abstract Complex systems whose subsystems interact at finitely many points are considered. The couplings are given by linear homogeneous differential relations.

The problem of determining the coupling parameters is solved. To this end, the system oscillations are represented as linear combinations of harmonic responses of the subsystems. For each point of coupling, one can construct a system of linear algebraic equations for the parameters (rigidities) of this coupling.

The method is intended for determining the values of rigidities of the couplings between blocks of spacecraft carriers. The analytic model of a simplest structure is carried out as an example.
Keywords system, subsystem, harmonic response, coupling, system of algebraic equations
References
1.  V. N. Grishin and V. V. Kirenkov, "Solution of a Typical Inverse Problem in Tests of Rocket Space Technology Products," Kosmonavtika Raketostr., No. 3 (60), 148-157 (2010).
2.  A. N. Tikhonov, "On the Solution of Ill-Posed Problems and the Method of Regularization," Dokl. Akad. Nauk SSSR 151 (3), 501-504 (1963) [Sov. Math. Dokl. (Engl. Transl.) 4, 1035-1038 (1963)].
3.  L. D. Akulenko and S. V. Nesterov, "Oscillations of Interacting Systems with Inhomogeneous Distributed Parameters," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 15-25 (1999) [Mech. Solids (Engl. Transl.)].
4.  V. N. Voronkov, "A Method for Solving Eigenvalue Problems for Complex Linear Systems," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 178-187 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 141-148 (2005)].
5.  V. N. Voronkov, "On a Method for Solving Eigenvalue Problems for Systems of One-Dimensional Subsystems with Discrete Constraints," Zh. Vych. Mat. Mat. Fiz. 52 (8), 1437-1456 (2012).
6.  L. D. Akulenko and S. V. Nesterov, "Accelerated Convergence Method for Solving the Periodic Boundary Value Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 56-68 (1999) [Mech. Solids (Engl. Transl.)].
7.  V. A. Postnov, "Use of Tikhonov's Regularization Method for Solving Identification Problem for Elastic Systems," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 64-71 (2010) [Mech. Solids (Engl. Transl.) 45 (1), 51-56 (2010)].
Received 15 January 2014
Link to Fulltext
<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100