Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-2pp.206-215

Archive of Issues

Total articles in the database: 11223
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8011
In English (Mech. Solids): 3212

<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
V.R. Bogdanov and G.T. Sulim, "Determination of the Material Fracture Toughness by Numerical Analysis of 3D Elastoplastic Dynamic Deformation," Mech. Solids. 51 (2), 206-215 (2016)
Year 2016 Volume 51 Number 2 Pages 206-215
DOI 10.3103/S0025654416020084
Title Determination of the Material Fracture Toughness by Numerical Analysis of 3D Elastoplastic Dynamic Deformation
Author(s) V.R. Bogdanov (National Transport University, ul. Suvorova 1, Kiev, 01010 Ukraine, vladislav_bogdanov@hotmail.com)
G.T. Sulim (Ivan Franko National University of L'viv, ul. Universytetskaya 1, Lviv, 79000 Ukraine, sulym@franko.lviv.ua)
Abstract We develop a technique for calculating the plastic strain and fracture toughness fields of a material by solving dynamical 3D problems of determining the stress-strain state in the elastoplastic statement with possible unloading of the material taken into account. The numerical solution was obtained by a finite difference scheme applied to the three-point shock bending tests of parallelepiped-shaped bars made of different materials with plane crack-notches in the middle. The fracture toughness coefficient was determined for reactor steel. The numerically calculated stress tensor components, mean stresses, the Odquist parameter characterizing the accumulated plastic strain, and the fracture toughness are illustrated by graphs.
Keywords compact specimen, three-point bending, plastic strain, crack front, fracture toughness, dynamic problem, shock loading
References
1.  A. L. Medvedskii and D. V. Tarlakovskii, "Nonstationary Contact between a Nondeformable Punch with Imperfections and an Elastic Half-Plane on the Segment of Supersonic Penetration," Vestnik MAI 18 (6), 125-132 (2011).
2.  V. D. Kubenko, V. V. Gavrilenko, and D. V. Tarlakovskii, "Action of Nonstationary Load on the Surface of an Elastic Strip," Dopov. Nat. Akad. Nauk Kiev, No. 1, 59-65 (2008).
3.  G. Weisbrod and D. Rittel, "A Method for Dynamic Fracture Toughness Determination Using Short Beams," Int. J. Fract. 104, 89-103 (2000).
4.  Yu. V. Nemirovskii and T. P. Romanova, "Dynamic Resistance of Plane Plastic Obstacles," (Geo, Novosibirsk, 2009) [in Russian].
5.  V. V. Kharchenko, E. A. Kondryakov, and A. V. Panasenko, "Specific Characteristics of Crack Propagation in Steels in Tests with Charpy Samples and Disk Samples," VANT. Kharkov, No. 2 (84), 31-38 (2013).
6.  V. R. Bogdanov and G. T. Sulim, "Plain Deformation of Elastoplastic Material with Profile Shaped as a Compact Specimen (Dynamic Loading)," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 111-120 (2013) [Mech. Solids (Engl. Transl.) 48 (3), 329-336 (2013)].
7.  V. R. Bogdanov and G. T. Sulim, "Modeling the Plastic Strain Increase on Impact Based on Numerical Solution of the Plane Stress State Problem," Vestnik MAI 20 (3), 196-201 (2013).
8.  V. R. Bogdanov, "Determination of Fracture Viscosity of a Material on the Basis of Numerical Modeling of Plane Deformed State," Vestnik Kiev Nats. Un-tu. Ser. Fiz.-Mat. Nauki, No. 3, 51-56 (2008).
9.  V. R. Bogdanov and G. T. Sulim, "Evaluation of Crack Resistance Based on the Numerical Modeling of the Plane Strain State," Fiz. Khim. Mekh. Mater., No. 6, 16-24 (2010) [Mater. Sci. (Engl. Transl.) 46 (6), 723-734 (2011)].
10.  V. R. Bogdanov and G. T. Sulim, "Determination of Fracture Viscosity of a Material on the Basis of Numerical Modeling of Three-Dimensional Dynamic Problem," in Intern. Sci.-Techn. Collection of Papers "Reliability and Durability of Machines and Constructions", No. 33, 153-166 (2010).
11.  V. R. Bogdanov, "Three-Dimensional Dynamic Problem of Plastic Strain and Stress Concentration near the Crack Tips," Vestnik Kiev Nats. Un-tu. Ser. Fiz.-Mat. Nauki, No. 2, 51-56 (2009).
12.  V. V. Piskun and Yu. N. Shevchenko, "Dynamic Elastoplastic Processes of Deformation of Bodies of Rotation under Pulse Loading," in Actual Aspects of Physical-Mechanical Research (Naukova Dumka, Kiev, 2007), pp. 239-251.
13.  V. I. Makhnenko, "Improvement of Methods for Estimation of Residual Life of Welded Joints in Durable Structures," Avtomatich. Svarka, No. 10-11, 112-121 (2003) [Paton Welding J. (Engl. Transl.), No. 10-11, 107-116 (2003)].
14.  B. Z. Margolin, V. A. Shvetsova, A. G. Gulenko, et al., "Fracture Toughness Predictions for a Reactor Pressure Vessel Steel in the Initial and Highly Embrittled States with the Master Curve Approach and a Probabilistic Model," Pressure Vessels and Piping, 219-231 (January 2002).
15.  A. G. Gogotsi, "Fracture Toughness Studies on V-Notched Ceramic Specimens," Probl. Prochn. No. 1, 120-127 (2000) [Strength of Materials (Engl. Transl.) 32 (1), 81-85 (2000)].
16.  ASTM Standard E399. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, in Annual Book of ASTM Standards, V.03.1 (ASTM, Philadelphia, PA, 1991).
17.  DIN 51 109 Testing of Advanced Technical Ceramics; Determination of Fracture Toughness (Kic) (1991).
18.  ASTM Standard E1921-97. Standard Test Method for Determination of Reference Temperature. To the Ferritic Steels in the Transition Range, in Annual Book of ASTM Standards, V.03.1, pp. 1068-1084.
19.  US Nuclear Regulatory Commission Guide 1.99 (TASK ME 305-4). Radiation Embrittlement of Reactor Vessel Materials, Revision 2, May 1988/
20.  M. P. Savruk, Fracture Mechanics and Strength of Materials, Vol. 2: Strain Intensity Factors for Cracked Bodies (Naukova Dumka, Kiev, 1988) [in Russian].
21.  B. Z. Margolin and V. A. Shvetsova, "Brittle Fracture Criterion: Structural Mechanics Approach," Probl. Prochn., No. 2, 3-16 (1992) [Strength of Materials (Engl. Transl.) 24 (2), 115-131 (1992)].
22.  E. L. Zyukina, "Conservative Difference Schemes on Uniform Grids for Two-Dimensional Wave Equations," in Proc. N. I. Lobachevskii Math. Center, Vol. 26 (Kazan, 2004), pp. 151-160 [in Russian].
Received 06 December 2013
Link to Fulltext
<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100