Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-5pp.596-605

Archive of Issues

Total articles in the database: 12804
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4760

<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
N.N. Golovin and G.N. Kuvyrkin, "Mathematical Models of Carbon-Carbon Composite Deformation," Mech. Solids. 51 (5), 596-605 (2016)
Year 2016 Volume 51 Number 5 Pages 596-605
DOI 10.3103/S0025654416050137
Title Mathematical Models of Carbon-Carbon Composite Deformation
Author(s) N.N. Golovin (Moscow Institute of Thermal Technology, Beryozovaya all. 10, Moscow, 127273 Russia, n_n_golovin@yauza.ru)
G.N. Kuvyrkin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia)
Abstract Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. The model parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronic-type theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.
Keywords carbon-carbon composite, anisotropy, different ways of resistance, deformation theory, endochronic theory
References
1.  V. O. Goegdzhaev, A. E. Osokin, and P. I. Perlin, "On an Approach to Solving the Problems of Elastoplastic Deformation of Anisotropic Media," Dokl. Akad. Nauk SSSR 261 (5), 1082-1085 (1981) [Dokl. Phys. (Engl. Transl.)].
2.  N. N. Golovin and G. N. Kuvyrkin, "Specific Characteristics of Computations of High-Temperature Structure Elements Produced of Carbon-Carbon Composites," Teplofiz. Vysokikh Temp. 34 (5), 761-769 (1996) [High Tempr. (Engl. Transl.)].
3.  R. M. Johns, "Modeling of Nonlinear Deformation of Carbon-Fiber-Carbon Composite Materials," Raketn. Tekhn. Kosmonavt. 18 (8), 166-175 (1980).
4.  N. N. Golovin, V. S. Zarubin, and G. N. Kuvyrkin, "Mathematical Modeling of Thermally Loaded Structure Elements," Vestnik MGTU. Mashinostr. Special Issue, 17-30 (2008).
5.  N. N. Golovin and G. N. Kuvyrkin, Thermomechanical Model of Nonlinear Deformation of Spatially Reinforced Carbon-Carbon Composites," Probl. Mashinostr. Nadezhn. Mashin, No. 2, 61-67 (1995).
6.  J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, New Jersey, 1983; Mir, Moscow, 1988).
7.  A. A. Zhiglyavskii and A. G. Zhiglyavskii, Methods for Searching Global Extremum (Nauka, Moscow, 1991) [in Russian].
8.  N. N. Golovin and G. N. Kuvyrkin, "Endochronic Model of Inelastic Deformation of Spatially Reinforced Carbon-Carbon Composites," in Proc. 5th Intern. Seminar "Contemporary Problems of Strength" (Velikii Novgorod, 2001), pp. 8-12 [in Russian].
Received 18 June 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 5 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100