| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 50, Issue 1 / 2015 | Next article >> |
G.T. Aldoshin and S.P. Yakovlev, "Analytic Model of Vibrations of a Carbon Dioxide Molecule. Fermi Resonance," Mech. Solids. 50 (1), 33-43 (2015) |
Year |
2015 |
Volume |
50 |
Number |
1 |
Pages |
33-43 |
DOI |
10.3103/S0025654415010045 |
Title |
Analytic Model of Vibrations of a Carbon Dioxide Molecule. Fermi Resonance |
Author(s) |
G.T. Aldoshin (Ustinov Baltic State Technical University "Voenmekh," ul. 1-ya Krasnoarmeyskaya 1, St. Petersburg, 190005 Russia, kaf_b3@bstu.spb.su)
S.P. Yakovlev (Ustinov Baltic State Technical University "Voenmekh," ul. 1-ya Krasnoarmeyskaya 1, St. Petersburg, 190005 Russia, yakovlev_sp@mail.ru) |
Abstract |
We use the invariant normalization method to study nonlinear autonomous vibrations of a CO2 molecule near its stable configuration. If the frequencies of symmetric and deformation vibrations are related as 2:1, then a third-order resonance occurs in the molecule. The simulation discovered the following two nonlinear effects: the energy transfer between modes of longitudinal and transverse vibration modes which participate in the resonance and the frequency splitting in the molecule spectrum; namely, instead of one line of symmetric vibration, there is a group of four closely located lines. These effects are known as the Fermi resonance phenomenon. |
Keywords |
carbon dioxide molecule, nonlinear vibrations, Fermi resonance, invariant normalization |
References |
1. | M. V. Volkenshtein, M. A. El'shevich, and B. I. Stepanov,
Molecule Oscillations
(Gostechizdat, Moscow-Leningrad, 1949)
[in Russian]. |
2. | G. Herzberg,
Oscillatory and Rotational Spectra of Polyatomic Molecules
(Izd-vo Inostr. Lit., Moscow, 1949)
[in Russian]. |
3. | E. Fermi,
"Über den Ramaneffekt des Kohlendioxyds,"
Zs. für Physik
71, 250 (1931). |
4. | A. Vitt and G. Gorelik,
"Elastic Pendulum Oscillations as an Example of Oscillations
of Two Parametrically Connected Linear Systems,"
Zh. Tekhn. Fiz.
3 (2-3), 294-307 (1933). |
5. | A. L. Kunitsyn and A. P. Markeev,
"Stability in Resonance Cases,"
in Progress in Science and Technology. General Mechanics, Vol. 4
(VINITI, Moscow, 1979),
pp. 58-139
[in Russian]. |
6. | G. T. Aldoshin,
"To the Problem of Linearization of Lagrange Equations,"
in Fifth Polyakhov Readings. Selected Proc. Intern. Conf. in Mechanics
(St. Petersburg, 2009)
[in Russian]. |
7. | A. G. Petrov and M. M. Shunderyuk,
"On Nonlinear Vibrations of a Heavy Mass Point on a Spring,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 2, 27-40 (2010)
[Mech. Solids (Enggl. Transl.)
45 (2), 176-186 (2010)]. |
8. | L. D. Landau and E. M. Lifshits,
Theoretical Physics. Vol. 3: Mechanics
(Nauka, Moscow, 1965)
[in Russian]. |
9. | E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge Univ. Press, Cambridge,
1927; ONTI, Moscow-Leningrad, 1937). |
10. | D. J. Korteweg,
"Sur Certaines Vibrations d'Ordre Superrierur et d'Intensile Anomale,"
Areh. Neeri Sci. Exactes et Natur, Ser. 2,
1, 229-260 (1898). |
11. | M. Born,
Lectures in Atomic Mechanics
(ONTI, Kharkov-Kiev, 1934), Vol. 1
[in Russian]. |
12. | K. S. Krasnov, N. V. Filippenko, V. A. Bobkova, et al.,
Molecular Constants of Nonorganic Compounds. Reference Book,
Ed. by K. S. Krasnov
(Khimiya, Leningrad. Otd., Leningrad, 1979)
[in Russian]. |
13. | A. G. Petrov,
"Nonlinear Vibrations of a Swinging Spring at Resonance,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 5, 18-28 (2006)
[Mech. Solids (Engl. Transl.)
41 (5), 13-22 (2006)]. |
14. | G. T. Aldoshin and S. P. Yakovlev,
"Dynamics of a Swinging Spring With Moving Support,"
Vestnik St. Peterburg. Univ. Ser. 1,
No. 4, 45-52 (2012). |
15. | L. A. Gribov,
Oscillations of Molecules
(KomKniga, Moscow, 2009)
[in Russian]. |
16. | G. T. Aldoshin,
Theory of Linear and Nonlinear Oscillations. A Manual
(Lan', St.Petersburg, 2013)
[in Russian]. |
|
Received |
12 March 2013 |
Link to Fulltext |
|
<< Previous article | Volume 50, Issue 1 / 2015 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|