Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-1pp.19-32

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
A.V. Vlakhova, "Risk Assessment of Flange Climb Derailment of a Rail Vehicle," Mech. Solids. 50 (1), 19-32 (2015)
Year 2015 Volume 50 Number 1 Pages 19-32
DOI 10.3103/S0025654415010033
Title Risk Assessment of Flange Climb Derailment of a Rail Vehicle
Author(s) A.V. Vlakhova (Lomonosov Moscow State University, Moscow, 119992 Russia, vlakhova@mail.ru)
Abstract We study the wheel flange climb onto the railhead, which is one of the most dangerous regimes of motion and can lead to derailment. The tangential components of the wheel-rail interaction forces are described by the creep model with small slips taken into account. We pass to the limit of infinite rigidity of the interacting bodies (zero slip velocities). It is shown that, in the actual service conditions of rail vehicle motion, neglecting the wheel-rail slip is not justified; namely, the limit model is determined by the primary Dirac constraints, i.e., finite relations between coordinates and momenta arising owing to the system Lagrangian degeneration. The obtained nonclassical model allows one to study the efficiency of some railway motion safety criteria and analytically estimate derailment conditions, which depend on the flange shape, the track curvature radius, the height of the vehicle center of mass, the wheel-rail interaction forces, the coefficients of friction of the interacting surfaces, and the external perturbation forces and moments.
Keywords derailment, model with no-slip conditions, dynamics of systems with primary Dirac constraints
References
1.  V. S. Lysyuk, Wheel Derailment Causes and Mechanism (Transport, Moscow, 2002) [in Russian].
2.  V. M. Ermakov and V. O. Pevzner, "On Derailment of Empty Cars," Zheleznodor. Transp., No. 2, 29-33 (2002).
3.  S. V. Vershinskii, V. N. Danilov, and I. I. Chelnokov, Railcar Dynamics (Transport, Moscow, 1978) [in Russian].
4.  Codes of Design of (Non-Self-Propelled) Gauge 1520 mm Railway Cars for the Ministry of Communication Lines (GosNIIV-VNIIZhT, Moscow, 1996) [in Russian].
5.  A. M. Orlova, Influence of Car Truck Structure Schemes and Parameters on Car Stability, Ride Performance, and Loading, Doctoral Dissertation in Technical Sciences (St. Petersburg, 2009) [in Russian].
6.  D. Yu. Pogorelov and V. A. Simonov, "A Factor for Estimating the Risk of Rolling Stock Derailment by the Wheel Rolling on the Railhead," Visn. SNY im V. Dalya, No. 5 (147), Pt. 1, 64-70 (2010).
7.  R. Kovalev, N. Lysikov, G. Mikheev, et al., "Freight Car Models and Their Computer-Aided Dynamic Analysis," Multibody Syst. Dyn. 22 (4), 399-423 (2009).
8.  I. V. Novozhilov and V. N. Filippov, "To the Evaluation of the Conditions for Rolling of the Railroad Wheel Pair Flange onto the Rail Head," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 21-29 (2002) [Mech. Solids (Engl. Transl.) 37 (5), 16-22 (2002)].
9.  W. J. Harris, S. M. Zakharov, J. Lundgren, et al., Guidelines to Best Practices for Heavy Haul Railway Operations: Wheel and Rail Interface Issues (Intext, Moscow, 2002) [in Russian].
10.  V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Editorial URSS, Moscow, 2002) [in Russian].
11.  V. V. Kozlov, "The Problem of Realizing Constraints in Dynamics," Prikl. Mat. Mekh. 56 (4), 692-698 (1992) [J. Appl. Math. Mech. (Engl. Transl.) 56 (4), 594-600 (1992)].
12.  A. B. Vasil'eva, "Asymptotic Methods in the Theory of Ordinary Differential Equations Containing Small Parameters in Front of the Higher Derivatives," Zh. Vych. Mat. Mat. Fiz. 3 (4), 611-642 (1963) [USSR Comput. Math. Math. Phys. (Engl. Trans.) 3 (4), 823-863 (1963)].
13.  I. V. Novozhilov, Fractional Analysis (Izd-vo MGU, Moscow, 1995) [in Russian].
14.  L. A. Shadura (Editor), Railway Cars. Structure, Theory, and Design (Transport, Moscow, 1980) [in Russian].
15.  I. V. Novozhilov, "Separation of Motions of a Rail Vehicle," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 55-59 (1980) [Mech. Solids (Engl. Transl.)].
16.  I. V. Novozhilov, P. A. Kruchinin, and M. Kh. Magomedov, "Contact Forces of Interaction between the Wheel and the Supporting Surface," in Collection of Scientific and Methodological Papers, No. 23 (Izd-vo MGU, Moscow, 2000), pp. 86-95 [in Russian].
17.  K. L. Johnson, Mechanics (Cambridge Univ. Press, New York-Cambridge, 1985; Mir, Moscow, 1989).
18.  V. Ph. Zhuravlev, "Dynamics of a Heavy Homogeneous Ball on a Rough Plane," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3-9 (2006) [Mech. Solids (Engl. Transl.) 41 (6), 1-5 (2006)].
19.  V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (IKI, NITs "Regular and Chaotic Mechanics", Moscow-Izhevsk, 2010) [in Russian].
20.  P. Dirac, "Generalized Hamiltonian Dynamics," in Variational Principles of Mechanics, Ed. by L. S. Polak (Fizmatgiz, Moscow, 1959), pp. 705-724 [in Russian].
21.  V. V. Nesterenko and A. M. Chervyakov, Singular Lagrangians. Classical Dynamics and Quantization, Preprint R2-86-323 (OIYaI, Dubna, 1986) [in Russian].
22.  M. Z. Yesenbayeva and A. D. Myshkis, "On Rolling of a Rigid Surface on Two Guide Ways," Differ. Uravn. 29 (5), 759-765 (1993) [Differ. Equations (Engl. Transl.)].
23.  M. Z. Yesenbayeva and A. D. Myshkis, "The Kinematics of the Rolling of a Rigid Body along Two Lines," Prikl. Mat. Mekh. 58 (1), 21-29 (1994) [J. Appl. Math. Mech. (Engl. Transl.) 58 (1), 21-29 (1994)].
24.  V. G. Vil'ke, "The Motion of a Railway Wheelset," Prikl. Mat. Mekh. 73 (4), 538-551 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (4), 385-394 (2009)].
25.  G. M. Rozenblat, "On the Stability of Motion of a Railway Wheel Pair," Dokl. Ross. Akad. Nauk 442 (5), 623-627 (2012) [Dokl. Phys. (Engl. Transl.) 57 (2), 87-91 (2012)].
26.  N. V. Voropaeva and V. A. Sobolev, Geometric Decomposition of Singularly Perturbed Systems (Fizmatlit, Moscow, 2009) [in Russian].
27.  Yu. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems (Nauka, Moscow, 1967; AMS, Providence, 1972).
28.  V. S. Sergeev, "To the Problem of Stability of of Motion of a Railway Wheelset," in Problems of Motion Stability and Stabilization (Dorodnitsyn Computer Center, Moscow, 2009), pp. 3-13 [in Russian].
29.  A. Orlova, "The Refined Linear Model of Wheelset on Track Motion," in Proc. of the 7th Miniconference on Vehicle System Dynamics, Identification, and Anomalies (Budapest, Hungary, 2000), pp. 233-241.
30.  E. N. Sokol, Derailment and Collisions of Rolling Stock (Legal expertise. Elements of Theory and Practice) (Transport Ukraini, Kiev, 2004).
Received 06 July 2012
Link to Fulltext
<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100